Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Neurosci ; 14: 38, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32076397

RESUMEN

The hemodynamic response is a neurovascular and metabolic process in which there is rapid delivery of blood flow to a neuronal tissue in response to neuronal activation. The functional magnetic resonance imaging (fMRI) and the functional near-infrared spectroscopy (fNIRS), for instance, are based on the physiological principles of such hemodynamic responses. Both techniques allow the mapping of active neuronal regions in which the neurovascular and metabolic events are occurring. However, although both techniques have revolutionized the neurosciences, they are mostly employed for neuroimaging of the human brain but not for the spinal cord during functional tasks. Moreover, little is known about other techniques measuring the hemodynamic response in the spinal cord. The purpose of the present study was to show for the first time that a simple optical system termed direct current photoplethysmography (DC-PPG) can be employed to detect hemodynamic responses of the spinal cord and the brainstem during the functional activation of the spinal central pattern generator (CPG). In particular, we positioned two DC-PPG systems directly on the brainstem and spinal cord during fictive scratching in the cat. The optical DC-PPG systems allowed the trial-by-trial recording of massive hemodynamic signals. We found that the "strength" of the flexor-plus-extensor motoneuron activities during motor episodes of fictive scratching was significantly correlated to the "strengths" of the brainstem and spinal DC-PPG signals. Because the DC-PPG was robustly detected in real-time, we claim that such a functional signal reflects the hemodynamic mass action of the brainstem and spinal cord associated with the CPG motor action. Our findings shed light on an unexplored hemodynamic observable of the spinal CPGs, providing a proof of concept that the DC-PPG can be used for the assessment of the integrity of the human CPGs.

2.
eNeuro ; 6(2)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31043462

RESUMEN

There is evidence that a variety of central and afferent stimuli, including swallowing, can produce phase resetting in the respiratory rhythmicity. Also, there are reports about the intrinsic linkage between locomotion and respiration. However, little is known about the interaction between the central pattern generators (CPGs) for scratching and respiration. The present study aims to examine whether the activation of scratching CPG produces phase resetting of the respiratory rhythm. We employed decerebrate cats to apply brief tactile stimuli to the pinna during the inspiratory-expiratory transition. We observed that those stimuli to the pinna not eliciting fictive scratching did not reset the respiratory rhythm. However, when the pinna stimuli elicited fictive scratching, then the respiratory rhythm exhibited a significant phase resetting. We also found interneurons in the medulla oblongata exhibiting phase resetting related to scratching-CPG episodes. This second finding suggests that this type of resetting involves brainstem components of the respiratory CPG. These results shed new light on the resetting action from a spinal CPG on the respiratory rhythm.


Asunto(s)
Generadores de Patrones Centrales/fisiología , Interneuronas/fisiología , Bulbo Raquídeo/fisiología , Periodicidad , Reflejo/fisiología , Frecuencia Respiratoria/fisiología , Médula Espinal/fisiología , Percepción del Tacto/fisiología , Animales , Gatos , Estado de Descerebración/fisiopatología , Femenino , Masculino
3.
Front Integr Neurosci ; 13: 75, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32038185

RESUMEN

Spinal motoneurons exhibit sustained afterdischarges and plateau potentials following a brief high-frequency stimulation of Ia afferents. Also, there is evidence that spinal cord interneurons exhibit plateau potentials. However, to our knowledge, there are no reports about the possible afterdischarge behavior of lumbar spinal interneurons activated by Ia afferents. Given that there are spinal interneurons receiving monosynaptic inputs from Ia afferents, these cells could then be activated in parallel to motoneurons after repetitive muscle stretch. We explored this possibility in cats with a precollicular-postmammillary decerebration. We found that a brief high-frequency stimulation of Ia afferents produces afterdischarges that are highly correlated to a DC slow potential recorded at the cord dorsum. We conclude that in the cat spinal cord, not only the motoneurons but also the interneurons from the superficial and deep dorsal horn produce sustained afterdischarges, thus highlighting the importance of interneurons in the spinal neuronal circuitry. The significance of our finding is that it opens the possibility that the spinal cord interneurons activated by Ia afferents could also exhibit bistability, a relevant phenomenon well-characterized in the motoneurons.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA