Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Peptides ; 28(2): 464-74, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17194506

RESUMEN

We review previously published data, and present some new data, indicating that spinal application of neuropeptide Y (NPY) reduces behavioral and neurophysiological signs of acute and chronic pain. In models of acute pain, early behavioral studies showed that spinal (intrathecal) administration of NPY and Y2 receptor agonists decrease thermal nociception. Subsequent neurophysiological studies indicated that Y2-mediated inhibition of excitatory neurotransmitter release from primary afferent terminals in the substantia gelatinosa may contribute to the antinociceptive actions of NPY. As with acute pain, NPY reduced behavioral signs of inflammatory pain such as mechanical allodynia and thermal hyperalgesia; however, receptor antagonist studies indicate an important contribution of spinal Y1 rather than Y2 receptors. Interestingly, Y1 agonists suppress inhibitory synaptic events in dorsal horn neurons (indeed, well known mu-opioid analgesic drugs produce similar cellular actions). To resolve the behavioral and neurophysiological data, we propose that NPY/Y1 inhibits the spinal release of inhibitory neurotransmitters (GABA and glycine) onto inhibitory neurons, e.g. disinhibition of pain inhibition, resulting in hyporeflexia. The above mechanisms of Y1- and Y2-mediated analgesia may also operate in the setting of peripheral nerve injury, and new data indicate that NPY dose-dependently inhibits behavioral signs of neuropathic pain. Indeed, neurophysiological studies indicate that Y2-mediated inhibition of Ca(2+) channel currents in dorsal root ganglion neurons is actually increased after axotomy. We conclude that spinal delivery of Y1 agonists may be of use in the treatment of chronic inflammatory pain, and that the use of Y1 and Y2 agonists in neuropathic pain warrants further consideration.


Asunto(s)
Analgésicos/administración & dosificación , Neuropéptido Y/administración & dosificación , Dolor/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Inyecciones Espinales
2.
Biol Psychiatry ; 61(9): 1049-61, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17081505

RESUMEN

BACKGROUND: Formation of long-term memories is critically dependent on extracellular-regulated kinase (ERK) signaling. Activation of the ERK pathway by the sequential recruitment of mitogen-activated protein kinases is well understood. In contrast, the proteins that inactivate this pathway are not as well characterized. METHODS: Here we tested the hypothesis that the brain-specific striatal-enriched protein tyrosine phosphatase (STEP) plays a key role in neuroplasticity and fear memory formation by its ability to regulate ERK1/2 activation. RESULTS: STEP co-localizes with the ERKs within neurons of the lateral amygdala. A substrate-trapping STEP protein binds to the ERKs and prevents their nuclear translocation after glutamate stimulation in primary cell cultures. Administration of TAT-STEP into the lateral amygdala (LA) disrupts long-term potentiation (LTP) and selectively disrupts fear memory consolidation. Fear conditioning induces a biphasic activation of ERK1/2 in the LA with an initial activation within 5 minutes of training, a return to baseline levels by 15 minutes, and an increase again at 1 hour. In addition, fear conditioning results in the de novo translation of STEP. Inhibitors of ERK1/2 activation or of protein translation block the synthesis of STEP within the LA after fear conditioning. CONCLUSIONS: Together, these data imply a role for STEP in experience-dependent plasticity and suggest that STEP modulates the activation of ERK1/2 during amygdala-dependent memory formation. The regulation of emotional memory by modulating STEP activity may represent a target for the treatment of psychiatric disorders such as posttraumatic stress disorder (PTSD), panic, and anxiety disorders.


Asunto(s)
Amígdala del Cerebelo/fisiología , Miedo/fisiología , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Neostriado/fisiología , Proteínas Tirosina Fosfatasas/fisiología , Estimulación Acústica , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Animales , Conducta Animal/efectos de los fármacos , Células Cultivadas , Condicionamiento Clásico/fisiología , Cicloheximida/farmacología , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Femenino , Inmunohistoquímica , Técnicas In Vitro , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neostriado/metabolismo , Técnicas de Placa-Clamp , Mutación Puntual/genética , Mutación Puntual/fisiología , Embarazo , Inhibidores de la Síntesis de la Proteína/farmacología , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Ratas , Ratas Sprague-Dawley , Translocación Genética/fisiología
3.
Pain ; 121(3): 261-275, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16516387

RESUMEN

Peripheral nerve injury promotes an enduring increase in the excitability of the spinal dorsal horn. This change, that likely underlies the development of chronic pain, may be a consequence of prolonged exposure of dorsal horn neurons to mediators such as neurotrophins, cytokines, and neurotransmitters. The long-term effects of such mediators can be analyzed by applying them to spinal neurons in organotypic slice culture. To assess the validity of this approach, we established serum-free, defined-medium organotypic cultures (DMOTC) from E13-14 prenatal rats. Whole-cell recordings were made from neurons maintained in DMOTC for up to 42 days. These were compared with recordings from neurons of similar age in acute spinal cord slices from 15- to 45-day-old rats. Five cell types were defined in acute slices as 'Tonic', 'Irregular', 'Delay', 'Transient' or 'Phasic' according to their discharge patterns in response to depolarizing current. Although fewer 'Phasic' cells were found in cultures, the proportions of 'Tonic', 'Irregular', 'Delay', and 'Transient' were similar to those found in acute slices. GABAergic, glycinergic, and 'mixed' inhibition were observed in neurons in acute slices and DMOTC. Pure glycinergic inhibition was absent in 7d cultures but became more pronounced as cultures aged. This parallels the development of glycinergic inhibition in vivo. These and other findings suggest that fundamental developmental processes related to neurotransmitter phenotype and neuronal firing properties are preserved in DMOTC. This validates their use in evaluating the cellular mechanisms that may contribute to the development of chronic pain.


Asunto(s)
Medios de Cultivo/farmacología , Neuronas/citología , Neuronas/metabolismo , Dolor/fisiopatología , Sustancia Gelatinosa/citología , Sustancia Gelatinosa/embriología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Envejecimiento/fisiología , Animales , Enfermedad Crónica/tratamiento farmacológico , Medios de Cultivo/química , Estimulación Eléctrica , Femenino , Glicina/metabolismo , Glicina/farmacología , Masculino , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas Aferentes/fisiología , Técnicas de Cultivo de Órganos/métodos , Dolor/inducido químicamente , Dolor/metabolismo , Técnicas de Placa-Clamp/métodos , Terminales Presinápticos/fisiología , Ratas , Ratas Sprague-Dawley , Sustancia Gelatinosa/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
4.
J Neurophysiol ; 92(6): 3266-75, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15295007

RESUMEN

Neuropathic pain that results from injury to the peripheral or CNS responds poorly to opioid analgesics. Y1 and Y2 receptors for neuropeptide Y (NPY) may, however, serve as targets for analgesics that retain their effectiveness in neuropathic pain states. In substantia gelatinosa neurons in spinal cord slices from adult rats, we find that NPY acts via presynaptic Y2 receptors to attenuate excitatory postsynaptic currents (EPSCs) and predominantly on presynaptic Y1 receptors to attenuate glycinergic and GABAergic inhibitory postsynaptic currents (IPSCs). Because NPY attenuates the frequency of TTX-resistant miniature EPSCs and IPSCs, perturbation of the neurotransmitter release process contributes to its actions at both excitatory and inhibitory synapses. These effects, which are reminiscent of those produced by analgesic opioids, provide a cellular basis for previously documented spinal analgesic actions mediated via Y1 and Y2 receptors in neuropathic pain paradigms. They also underline the importance of suppression of inhibition in spinal analgesic mechanisms.


Asunto(s)
Inhibición Neural/efectos de los fármacos , Neuropéptido Y/farmacología , Receptores de Neuropéptido Y/fisiología , Sustancia Gelatinosa/fisiología , Analgésicos Opioides/farmacología , Animales , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Glicina/fisiología , Inhibición Neural/fisiología , Ratas , Ratas Sprague-Dawley , Receptores Opioides mu/agonistas , Sustancia Gelatinosa/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/fisiología
5.
Can J Physiol Pharmacol ; 81(7): 663-82, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12897814

RESUMEN

Nociceptive pain alerts the body to potential or actual tissue damage. By contrast, neuropathic or "noninflammatory" pain, which results from injury to the nervous system, serves no useful purpose. It typically continues for years after the original injury has healed. Sciatic nerve lesions can invoke chronic neuropathic pain that is accompanied by persistent, spontaneous activity in primary afferent fibers. This activity, which reflects changes in the properties and functional expression of Na+, K+, and Ca2+ channels, initiates a further increase in the excitability of second-order sensory neurons in the dorsal horn. This change persists for many weeks. The source of origin of the pain thus moves from the peripheral to the central nervous system. We hypothesize that this centralization of pain involves the inappropriate release of peptidergic neuromodulators from primary afferent fibers. Peptides such as substance P, neuropeptide Y (NPY), calcitonin-gene-related peptide (CGRP), and brain-derived neurotrophic factor (BDNF) may promote enduring changes in excitability as a consequence of neurotrophic actions on ion channel expression in the dorsal horn. Findings that form the basis of this hypothesis are reviewed. Study of the neurotrophic control of ion channel expression by spinal peptides may thus provide new insights into the etiology of neuropathic pain.


Asunto(s)
Potenciales de Acción/fisiología , Ganglios Espinales/lesiones , Ganglios Espinales/fisiología , Neuronas Aferentes/fisiología , Animales , Humanos , Canales Iónicos/fisiología , Traumatismos de los Nervios Periféricos , Nervios Periféricos/fisiología
6.
J Pharmacol Exp Ther ; 302(2): 568-76, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12130717

RESUMEN

High doses of intrathecally applied morphine or morphine-3beta-D-glucuronide (M3G) produce allodynia and hyperalgesia. Whole-cell patch-clamp recordings were made from substantia gelatinosa neurons in transverse slices of adult rat lumbar spinal cord to compare the actions of M3G with those of the mu-opioid agonist, DAMGO ([D-Ala(2),N-Met-Phe(4),Gly-ol(5)]-enkephalin), and the ORL(1) agonist, nociceptin/orphanin FQ (N/OFQ). M3G (1-100 microM) had little or no effect on evoked excitatory postsynaptic currents (EPSC) and no effect on postsynaptic membrane conductance. In contrast, 1 microM DAMGO and 1 microM N/OFQ reduced the amplitude of evoked EPSCs and activated an inwardly rectifying K(+) conductance. M3G did not attenuate the effect of DAMGO or N/OFQ on evoked EPSC amplitude. However, 1 to 100 microM M3G reduced the amplitude of evoked GABAergic and glycinergic inhibitory postsynaptic current (IPSC) by up to 48%. This effect was naloxone-insensitive. The evoked IPSC was also attenuated by DAMGO, but not by N/OFQ. Because M3G reduced the frequency of tetrodotoxin-insensitive miniature IPSCs and increased paired-pulse facilitation, it appeared to act presynaptically to disinhibit substantia gelatinosa neurons. This effect, which does not appear to involve mu-opioid or ORL(1) receptors, may contribute to the allodynia and hyperalgesia observed after intrathecal application of high doses of morphine.


Asunto(s)
Estimulantes del Sistema Nervioso Central/farmacología , Derivados de la Morfina/farmacología , Sustancia Gelatinosa/fisiología , Transmisión Sináptica/efectos de los fármacos , Animales , Estimulación Eléctrica , Encefalina Ala(2)-MeFe(4)-Gli(5)/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Péptidos Opioides/farmacología , Ratas , Ratas Sprague-Dawley , Estricnina/farmacología , Sustancia Gelatinosa/efectos de los fármacos , Nociceptina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA