Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Spine Surg ; 17(1): 95-102, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36697205

RESUMEN

BACKGROUND: Direct current electrical stimulation may serve as a promising nonpharmacological adjunct promoting osteogenesis and fusion. The aim of this study was to evaluate the utility of electroactive spine instrumentation in the focal delivery of therapeutic electrical stimulation to enhance lumbar bone formation and interbody fusion. METHODS: A finite element model of adult human lumbar spine (L4-L5) instrumented with single-level electroactive pedicle screws was simulated. Direct current electrical stimulation was routed through anodized electroactive pedicle screws to target regions of fusion. The electrical fields generated by electroactive pedicle screws were evaluated in various tissue compartments including isotropic tissue volumes, cortical, and trabecular bone. Electrical field distributions at various stimulation amplitudes (20-100 µA) and pedicle screw anodization patterns were analyzed in target regions of fusion (eg, intervertebral disc space, vertebral body, and pedicles). RESULTS: Electrical stimulation with electroactive pedicle screws at various stimulation amplitudes and anodization patterns enabled modulation of spatial distribution and intensity of electric fields within the target regions of lumbar spine. Anodized screws (50%) vs unanodized screws (0%) induced high-amplitude electric fields within the intervertebral disc space and vertebral body but negligible electric fields in spinal canal. Direct current electrical stimulation via anodized screws induced electrical fields, at therapeutic threshold of >1 mV/cm, sufficient for osteoinduction within the target interbody region. CONCLUSIONS: Selective anodization of electroactive pedicle screws may enable focal delivery of therapeutic electrical stimulation in the target regions in human lumbar spine. This study warrants preclinical and clinical testing of integrated electroactive system in inducing target lumbar fusion in vivo. CLINICAL RELEVANCE: The findings of this study provide a foundation for clinically investigating electroactive intrumentation to enhance spine fusion.

2.
Clin EEG Neurosci ; 42(4): 259-65, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22208124

RESUMEN

Over the past decade, electrocorticography (ECoG) has been used for a wide set of clinical and experimental applications. Recently, there have been efforts in the clinic to adapt traditional ECoG arrays to include smaller recording contacts and spacing. These devices, which may be collectively called "micro-ECoG" arrays, are loosely defined as intercranial devices that record brain electrical activity on the sub-millimeter scale. An extensible 3D-platform of thin film flexible micro-scale ECoG arrays appropriate for Brain-Computer Interface (BCI) application, as well as monitoring epileptic activity, is presented. The designs utilize flexible film electrodes to keep the array in place without applying significant pressure to the brain and to enable radial subcranial deployment of multiple electrodes from a single craniotomy. Deployment techniques were tested in non-human primates, and stimulus-evoked activity and spontaneous epileptic activity were recorded. Further tests in BCI and epilepsy applications will make the electrode platform ready for initial human testing.


Asunto(s)
Electroencefalografía/métodos , Epilepsia/fisiopatología , Corteza Motora/fisiología , Interfaz Usuario-Computador , Animales , Craneotomía , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Electroencefalografía/instrumentación , Diseño de Equipo , Potenciales Evocados , Macaca fascicularis , Microelectrodos , Corteza Motora/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA