RESUMEN
Mine tailings are one of the primary contaminant sources of heavy metals and metalloids in the soil. Besides increasing the concentration of potentially toxic elements (PTEs), tailings may modify the edaphic conditions and decrease the buffer capacity of impacted soils. The influence of tailings may reach distances far from the impoundments depending on the transport path and the specific transport mean: air, rain (runoff and infiltration), or acid mine drainage. In this study, soil samples from various horizons were collected in trial pits along a transect, at different distances from sulfide tailings. Soil analysis included texture, organic matter, alkalinity, porous space, carbonates, pH, electrical conductivity, real density, apparent density, total sulfur, main mineralogy, and total concentrations of As, Cd, Pb, Fe, and Zn. Graphical and statistical interpretation of the results showed that real density and porous space are the leading indicators of the tailings dispersion and accumulation and that pH is not a significant parameter (all values were above the neutrality) due to the limestone abundance in the area. However, Zn and Cd concentrations had an inverse relation with pH. Differences in the concentrations of PTEs between the superficial and deep layers that increased toward the tailings were also observed. Gypsum was only present in the closest samples to the tailings and may also be an indicator of tailings' influence on soils. This study allowed us to identify general edaphic parameters as a first and quick means to determine the tailings contamination of soils.
Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo/química , Cadmio/análisis , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisisRESUMEN
A hydro-geochemical characterization was conducted in the northern part of the Sonora River basin, covering an area of 9400 km2. Equipotential lines indicated that groundwater circulation coincided with the surface water flow direction. Based on the groundwater temperature measured (on average â¼21 °C), only one spring exhibited thermalism (51 °C). Electrical conductivity (160-1750 µS/cm), chloride and nitrate concentrations (>10 and >45 mg/L) imply highly ionized water and anthropogenic pollution. In the river network, δ18O values revealed a clear modern meteoric origin. Focused recharge occurred mainly from the riverbeds during the rainy season. During the dry season, diffuse recharge was characterized by complex return flows from irrigation, urban, agricultural, mining, and livestock. Drilled wells (>50 m) exhibited a strong meteoric origin from higher elevations during the rainy season with minimal hydrochemical anomalies. Our results contribute to the knowledge of mountain-front and mountain-block recharge processes in a semi-arid and human-altered landscape in northern Mexico, historically characterized by limited hydrogeological data.
Asunto(s)
Agua Subterránea , Ríos , Humanos , Ríos/química , México , Monitoreo del Ambiente/métodos , Isótopos/análisis , Agua Subterránea/química , AguaRESUMEN
Drinking water with a high natural concentration of fluoride (F-) has serious consequences for the health of the rural population in the state of Guanajuato, Mexico, where the water contains levels of F- that are not allowed by national and international regulations (1.5 mg/L). This health problem is very common in multiple states throughout Mexico where drinking water is generally extracted from aquifers that are hosted in fractured volcanic rocks of the Tertiary. These aquifers show similar geological characteristics: deep basins that formed as a result of felsic eruptive events and the extensional deformation of the Basin and Range and are now filled with unconsolidated sediments. In this study, we assessed the occurrence of F in volcanic rocks collected at 11 sampling sites along the Sierra de Codornices in Guanajuato (ranging between 0.01299 and 0.146 wt%, average 0.039 wt%, and SD = 0.039 wt%; n = 10), a region where both rural and urban communities consume drinking water with a high F- content (up to 7.1 (mg/L). The F content is dispersed in volcanic rocks, and the highest levels are present in felsic rocks. The statistical and hydrogeochemical results of a sampling campaign of 32 wells in the Juventino Rosas (JR) and Villagran (Vill) municipalities in 2019 suggest that F- mobilization in groundwater is the product of silicate weathering and the dissolution of volcanic glass, alkaline desorption in the surfaces of F-containing minerals, and possibly ion exchange of minerals and clays or deep fluids enriched with F-, in addition to the precipitation of carbonates that decrease the Ca2+ concentration in groundwater. All of these processes can be accelerated by groundwater geothermal characteristics within the study area. The hydrogeochemical, fluoride exposure risk, and fluoride pollution index (FPI) results, as well as the epidemiological survey, indicate that teenagers and older adults from Praderas de la Venta are at risk of exposure to F- due to the high concentrations ingested over a long period, the toxicity of the element, and its ability to accumulate in the bones. Extended exposure to elevated levels increases the risk. This work allows us to observe how the populations of JR and Vill can be exposed to high F- contents in drinking water due to the geological characteristics of the region.