Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39026855

RESUMEN

In the mammalian neocortex, GABAergic interneurons (INs) inhibit cortical networks in profoundly different ways. The extent to which this depends on how different INs process excitatory signals along their dendrites is poorly understood. Here, we reveal that the functional specialization of two major populations of cortical INs is determined by the unique association of different dendritic integration modes with distinct synaptic organization motifs. We found that somatostatin (SST)-INs exhibit NMDAR-dependent dendritic integration and uniform synapse density along the dendritic tree. In contrast, dendrites of parvalbumin (PV)-INs exhibit passive synaptic integration coupled with proximally enriched synaptic distributions. Theoretical analysis shows that these two dendritic configurations result in different strategies to optimize synaptic efficacy in thin dendritic structures. Yet, the two configurations lead to distinct temporal engagement of each IN during network activity. We confirmed these predictions with in vivo recordings of IN activity in the visual cortex of awake mice, revealing a rapid and linear recruitment of PV-INs as opposed to a long-lasting integrative activation of SST-INs. Our work reveals the existence of distinct dendritic strategies that confer distinct temporal representations for the two major classes of neocortical INs and thus dynamics of inhibition.

2.
Cell Rep ; 43(5): 114197, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38733587

RESUMEN

Interneurons (INs), specifically those in disinhibitory circuits like somatostatin (SST) and vasoactive intestinal peptide (VIP)-INs, are strongly modulated by the behavioral context. Yet, the mechanisms by which these INs are recruited during active states and whether their activity is consistent across sensory cortices remain unclear. We now report that in mice, locomotor activity strongly recruits SST-INs in the primary somatosensory (S1) but not the visual (V1) cortex. This diverse engagement of SST-INs cannot be explained by differences in VIP-IN function but is absent in the presence of visual input, suggesting the involvement of feedforward sensory pathways. Accordingly, inactivating the somatosensory thalamus, but not decreasing VIP-IN activity, significantly reduces the modulation of SST-INs by locomotion. Model simulations suggest that the differences in SST-INs across behavioral states can be explained by varying ratios of VIP- and thalamus-driven activity. By integrating feedforward activity with neuromodulation, SST-INs are anticipated to be crucial for adapting sensory processing to behavioral states.


Asunto(s)
Interneuronas , Somatostatina , Péptido Intestinal Vasoactivo , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Somatostatina/metabolismo , Ratones , Péptido Intestinal Vasoactivo/metabolismo , Corteza Somatosensorial/fisiología , Corteza Somatosensorial/metabolismo , Masculino , Ratones Endogámicos C57BL , Locomoción/fisiología , Conducta Animal/fisiología , Corteza Visual/fisiología , Corteza Visual/metabolismo , Tálamo/fisiología , Tálamo/metabolismo
3.
Nat Commun ; 14(1): 1531, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934089

RESUMEN

Cajal-Retzius cells (CRs) are transient neurons, disappearing almost completely in the postnatal neocortex by programmed cell death (PCD), with a percentage surviving up to adulthood in the hippocampus. Here, we evaluate CR's role in the establishment of adult neuronal and cognitive function using a mouse model preventing Bax-dependent PCD. CRs abnormal survival resulted in impairment of hippocampus-dependent memory, associated in vivo with attenuated theta oscillations and enhanced gamma activity in the dorsal CA1. At the cellular level, we observed transient changes in the number of NPY+ cells and altered CA1 pyramidal cell spine density. At the synaptic level, these changes translated into enhanced inhibitory currents in hippocampal pyramidal cells. Finally, adult mutants displayed an increased susceptibility to lethal tonic-clonic seizures in a kainate model of epilepsy. Our data reveal that aberrant survival of a small proportion of postnatal hippocampal CRs results in cognitive deficits and epilepsy-prone phenotypes in adulthood.


Asunto(s)
Hipocampo , Neuronas , Hipocampo/fisiología , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Neuronas/metabolismo , Células Piramidales/fisiología , Convulsiones/genética , Convulsiones/metabolismo , Animales , Ratones
4.
Cell Rep ; 38(8): 110415, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35196488

RESUMEN

NMDA receptors (NMDARs) have been proposed to control single-neuron computations in vivo. However, whether specific mechanisms regulate the function of such receptors and modulate input-output transformations performed by cortical neurons under in vivo-like conditions is understudied. Here, we report that in layer 2/3 pyramidal neurons (L2/3 PNs), repeated synaptic stimulation results in an activity-dependent decrease in NMDAR function by vesicular zinc. Such a mechanism shifts the threshold for dendritic non-linearities and strongly reduces LTP. Modulation of NMDARs is cell and pathway specific, being present selectively in L2/3-L2/3 connections but absent in inputs originating from L4 neurons. Numerical simulations highlight that activity-dependent modulation of NMDARs influences dendritic computations, endowing L2/3 PN dendrites with the ability to sustain non-linear integrations constant across different regimes of synaptic activity like those found in vivo. Our results unveil vesicular zinc as an important endogenous modulator of dendritic function in cortical PNs.


Asunto(s)
Dendritas , Neuronas , Receptores de N-Metil-D-Aspartato , Sinapsis , Zinc , Dendritas/metabolismo , Neuronas/metabolismo , Células Piramidales/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Zinc/metabolismo
5.
Front Cell Neurosci ; 14: 173, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612513

RESUMEN

GABAergic transmission regulates neuronal excitability, dendritic integration of synaptic signals and oscillatory activity, thought to be involved in high cognitive functions. By anchoring synaptic receptors just opposite to release sites, the scaffold protein gephyrin plays a key role in these tasks. In addition, by regulating GABAA receptor trafficking, gephyrin contributes to maintain, at the network level, an appropriate balance between Excitation (E) and Inhibition (I), crucial for information processing. An E/I imbalance leads to neuropsychiatric disorders such as epilepsy, schizophrenia and autism. In this article, we exploit a previously published computational method to fit spontaneous synaptic events, using a simplified model of the subcellular pathways involving gephyrin at inhibitory synapses. The model was used to analyze experimental data recorded under different conditions, with the main goal to gain insights on the possible consequences of gephyrin block on IPSCs. The same approach can be useful, in general, to analyze experiments designed to block a single protein. The results suggested possible ways to correlate the changes observed in the amplitude and time course of individual events recorded after different experimental protocols with the changes that may occur in the main subcellular pathways involved in gephyrin-dependent transsynaptic signaling.

6.
Nat Commun ; 8: 15292, 2017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489079

RESUMEN

The capsaicin receptor TRPV1 has been widely characterized in the sensory system as a key component of pain and inflammation. A large amount of evidence shows that TRPV1 is also functional in the brain although its role is still debated. Here we report that TRPV1 is highly expressed in microglial cells rather than neurons of the anterior cingulate cortex and other brain areas. We found that stimulation of microglial TRPV1 controls cortical microglia activation per se and indirectly enhances glutamatergic transmission in neurons by promoting extracellular microglial microvesicles shedding. Conversely, in the cortex of mice suffering from neuropathic pain, TRPV1 is also present in neurons affecting their intrinsic electrical properties and synaptic strength. Altogether, these findings identify brain TRPV1 as potential detector of harmful stimuli and a key player of microglia to neuron communication.


Asunto(s)
Biomarcadores/metabolismo , Encefalitis/metabolismo , Neuralgia/metabolismo , Canales Catiónicos TRPV/metabolismo , Animales , Micropartículas Derivadas de Células , Potenciales Postsinápticos Excitadores , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microglía/metabolismo , Neuronas/metabolismo , Neuronas/fisiología , Transmisión Sináptica , Canales Catiónicos TRPV/genética
7.
Front Neuroinform ; 10: 23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445784

RESUMEN

Computational modeling of brain circuits requires the definition of many parameters that are difficult to determine from experimental findings. One way to help interpret these data is to fit them using a particular kinetic model. In this paper, we propose a general procedure to fit individual synaptic events recorded from voltage clamp experiments. Starting from any given model description (mod file) in the NEURON simulation environment, the procedure exploits user-defined constraints, dependencies, and rules for the parameters of the model to fit the time course of individual spontaneous synaptic events that are recorded experimentally. The procedure, implemented in NEURON, is currently available in ModelDB. A Python version is installed, and will be soon available for public use, as a standalone task in the Collaboratory Portal of the Human Brain Project. To illustrate the potential application of the procedure, we tested its use with various sets of experimental data on GABAergic synapses; gephyrin and gephyrin-dependent pathways were chosen as a suitable example of a kinetic model of synaptic transmission. For individual spontaneous inhibitory events in hippocampal pyramidal CA1 neurons, we found that gephyrin-dependent subcellular pathways may shape synaptic events at different levels, and can be correlated with cell- or event-specific activity history and/or pathological conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA