Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 12(10)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35630934

RESUMEN

Resonant tunneling devices are still under study today due to their multiple applications in optoelectronics or logic circuits. In this work, we review an out-of-equilibrium GaAs/AlGaAs double-barrier resonant tunneling diode system, including the effect of donor density and external potentials in a self-consistent way. The calculation method uses the finite-element approach and the Landauer formalism. Quasi-stationary states, transmission probability, current density, cut-off frequency, and conductance are discussed considering variations in the donor density and the width of the central well. For all arrangements, the appearance of negative differential resistance (NDR) is evident, which is a fundamental characteristic of practical applications in devices. Finally, a comparison of the simulation with an experimental double-barrier system based on InGaAs with AlAs barriers reported in the literature has been obtained, evidencing the position and magnitude of the resonance peak in the current correctly.

2.
Nanomaterials (Basel) ; 11(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063019

RESUMEN

Quantum wires continue to be a subject of novel applications in the fields of electronics and optoelectronics. In this work, we revisit the problem of determining the electron states in semiconductor quantum wires in a self-consistent way. For that purpose, we numerically solve the 2D system of coupled Schrödinger and Poisson equations within the envelope function and effective mass approximations. The calculation method uses the finite-element approach. Circle, square, triangle and pentagon geometries are considered for the wire cross-sectional shape. The features of self-consistent band profiles and confined electron state spectra are discussed, in the latter case, as functions of the transverse wire size and temperature. Particular attention is paid to elucidate the origin of Friedel-like oscillations in the density of carriers at low temperatures.

3.
Nanoscale Res Lett ; 7(1): 538, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23021497

RESUMEN

: The linear and nonlinear intraband optical absorption coefficients in GaAs three-dimensional single quantum rings are investigated. Taking into account the combined effects of hydrostatic pressure and electric field, applied along the growth direction of the heterostructure, the energies of the ground and first excited states of a donor impurity have been found using the effective mass approximation and a variational method. The energies of these states are examined as functions of the dimensions of the structure, electric field, and hydrostatic pressure. We have also investigated the dependencies of the linear, nonlinear, and total optical absorption coefficients as a function of incident photon energy for several configurations of the system. It is found that the variation of distinct sizes of the structure leads to either a redshift and/or a blueshift of the resonant peaks of the intraband optical spectrum. In addition, we have found that the application of an electric field leads to a redshift, whereas the influence of hydrostatic pressure leads to a blueshift (in the case of on-ring-center donor impurity position) of the resonant peaks of the intraband optical spectrum.

4.
Nanoscale Res Lett ; 7(1): 508, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22971418

RESUMEN

: The exciton binding energy of an asymmetrical GaAs-Ga1-xAlxAs cylindrical quantum dot is studied with the use of the effective mass approximation and a variational calculation procedure. The influence on this quantity of the application of a direct-current electric field along the growth direction of the cylinder, together with that of an intense laser field, is particularly considered. The resulting states are used to calculate the exciton-related nonlinear optical absorption and optical rectification, whose corresponding resonant peaks are reported as functions of the external probes, the quantum dot dimensions, and the aluminum molar fraction in the potential barrier regions.

5.
Nanoscale Res Lett ; 7(1): 492, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-22937963

RESUMEN

: In this work, we study the exciton states in a zincblende InGaN/GaN quantum well using a variational technique. The system is considered under the action of intense laser fields with the incorporation of a direct current electric field as an additional external probe. The effects of these external influences as well as of the changes in the geometry of the heterostructure on the exciton binding energy are discussed in detail.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA