Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 6505, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35581205

RESUMEN

CUX2 gene encodes a transcription factor that controls neuronal proliferation, dendrite branching and synapse formation, locating at the epilepsy-associated chromosomal region 12q24 that we previously identified by a genome-wide association study (GWAS) in Japanese population. A CUX2 recurrent de novo variant p.E590K has been described in patients with rare epileptic encephalopathies and the gene is a candidate for the locus, however the mutation may not be enough to generate the genome-wide significance in the GWAS and whether CUX2 variants appear in other types of epilepsies and physiopathological mechanisms are remained to be investigated. Here in this study, we conducted targeted sequencings of CUX2, a paralog CUX1 and its short isoform CASP harboring a unique C-terminus on 271 Japanese patients with a variety of epilepsies, and found that multiple CUX2 missense variants, other than the p.E590K, and some CASP variants including a deletion, predominantly appeared in patients with temporal lobe epilepsy (TLE). The CUX2 variants showed abnormal localization in human cell culture analysis. While wild-type CUX2 enhances dendritic arborization in fly neurons, the effect was compromised by some of the variants. Cux2- and Casp-specific knockout mice both showed high susceptibility to kainate, increased excitatory cell number in the entorhinal cortex, and significant enhancement in glutamatergic synaptic transmission to the hippocampus. CASP and CUX2 proteins physiologically bound to each other and co-expressed in excitatory neurons in brain regions including the entorhinal cortex. These results suggest that CUX2 and CASP variants contribute to the TLE pathology through a facilitation of excitatory synaptic transmission from entorhinal cortex to hippocampus.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Epilepsia/genética , Estudio de Asociación del Genoma Completo , Hipocampo/metabolismo , Proteínas de Homeodominio/genética , Humanos , Ácido Kaínico , Ratones , Convulsiones/genética , Transmisión Sináptica
2.
Cell Adh Migr ; 2(2): 81-2, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19262120

RESUMEN

The class-specific transcription factors Knot and Cut act during dendrite arbor development to define the characteristic dendrite branching pattern of the Drosophila class IV dendritic arborisation sensory neurons. Knot mediates dendrite arbor outgrowth and branching via a microtubule-based program that includes upregulation of the microtubule severing protein Spastin. On the other hand, Cut promotes dendrite arbor outgrowth and branching through a filamentous-actin based program and additionally promotes filopodia formation. We discuss how differential regulation of the activity of the Rac1 small GTPase by Knot and Cut may underlie some of the different roles these transcription factors play during class-specific dendrite arbor morphogenesis.


Asunto(s)
Forma de la Célula , Dendritas/metabolismo , Actinas/metabolismo , Animales , Factores de Transcripción/metabolismo , Proteína de Unión al GTP rac1/metabolismo
3.
Neuron ; 56(6): 963-78, 2007 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-18093520

RESUMEN

In a complex nervous system, neuronal functional diversity is reflected in the wide variety of dendritic arbor shapes. Different neuronal classes are defined by class-specific transcription factor combinatorial codes. We show that the combination of the transcription factors Knot and Cut is particular to Drosophila class IV dendritic arborization (da) neurons. Knot and Cut control different aspects of the dendrite cytoskeleton, promoting microtubule- and actin-based dendritic arbors, respectively. Knot delineates class IV arbor morphology by simultaneously synergizing with Cut to promote complexity and repressing Cut-mediated promotion of dendritic filopodia/spikes. Knot increases dendritic arbor outgrowth through promoting the expression of Spastin, a microtubule-severing protein disrupted in autosomal dominant hereditary spastic paraplegia (AD-HSP). Knot and Cut may modulate cellular mechanisms that are conserved between Drosophila and vertebrates. Hence, this study gives significant general insight into how multiple transcription factors combine to control class-specific dendritic arbor morphology through controlling different aspects of the cytoskeleton.


Asunto(s)
Citoesqueleto/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/fisiología , Proteínas de Homeodominio/fisiología , Neuronas/citología , Proteínas Nucleares/fisiología , Factores de Transcripción/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrión no Mamífero , Regulación de la Expresión Génica/fisiología , Morfogénesis , Plasticidad Neuronal , Seudópodos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA