Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 17(19): 18775-18791, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37650798

RESUMEN

Although poly(aspartic acid) (PASP), a strong calcium chelating agent, may be potentially effective in inhibition of vascular calcification, its direct administration may lead to side effects. In this study, we employed polysuccinimide, a precursor of PASP, to prepare targeted polysuccinimide-based nanoparticles (PSI NPs) that not only acted as a prodrug but also functioned as a carrier of additional therapeutics to provide powerful synergistic vascular anticalcification effect. This paper shows that chemically modified PSI-NPs can serve as effective nanocarriers for loading of hydrophobic drugs, in addition to anticalcification and antireactive oxygen species (anti-ROS) activities. Curcumin (Cur), with high loading efficiency, was encapsulated into the NPs. The NPs were stable for 16 h in physiological conditions and then slowly dissolved/hydrolyzed to release the therapeutic PASP and the encapsulated drug. The drug release profile was found to be in good agreement with the NP dissolution profile such that complete release occurred after 48 h at physiological conditions. However, under acidic conditions, the NPs were stable, and Cur cumulative release reached only 30% after 1 week. Though highly effective in the prevention of calcium deposition, PSI NPs could not prevent the osteogenic trans-differentiation of vascular smooth muscle cells (VSMCs). The presence of Cur addressed this problem. It not only further reduced ROS level in macrophages but also prevented osteogenic differentiation of VSMCs in vitro. The NPs were examined in vivo in a rat model of vascular calcification induced by kidney failure through an adenine diet. The inclusion of Cur and PSI NPs combined the therapeutic effects of both. Cur-loaded NPs significantly reduced calcium deposition in the aorta without adversely affecting bone integrity or noticeable side effects/toxicity as examined by organ histological and serum biochemistry analyses.

2.
Artículo en Inglés | MEDLINE | ID: mdl-34651465

RESUMEN

Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.


Asunto(s)
Nanopartículas de Magnetita , Células Madre Mesenquimatosas , Rastreo Celular/métodos , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Células Madre Mesenquimatosas/patología , Células Madre
3.
Biomater Sci ; 10(1): 10-50, 2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-34775503

RESUMEN

Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.


Asunto(s)
Hemostáticos , Nanopartículas , Trombosis , Hemorragia/inducido químicamente , Hemostasis , Hemostáticos/farmacología , Humanos
5.
ACS Nano ; 12(9): 9162-9176, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30118590

RESUMEN

Two important challenges in the field of 19F magnetic resonance imaging (MRI) are the maintenance of high fluorine content without compromising imaging performance, and effective targeting of small particles to diseased tissue. To address these challenges, we have developed a series of perfluoropolyether (PFPE)-based hyperbranched (HBPFPE) nanoparticles with attached peptide aptamer as targeting ligands for specific in vivo detection of breast cancer with high 19F MRI sensitivity. A detailed comparison of the HBPFPE nanoparticles (NPs) with the previously reported trifluoroethyl acrylate (TFEA)-based polymers demonstrates that the mobility of fluorinated segments of the HBPFPE nanoparticles is significantly enhanced (19F T2 > 80 ms vs 31 ms), resulting in superior MR imaging sensitivity. Selective targeting was confirmed by auto- and pair correlation analysis of fluorescence microscopy data, in vitro immunofluorescence, in vivo 19F MRI, ex vivo fluorescence and 19F NMR. The results highlight the high efficiency of aptamers for targeting and the excellent sensitivity of the PFPE moieties for 19F MRI. Of relevance to in vivo applications, the PFPE-based polymers exhibit much faster clearance from the body than the previously introduced perfluorocarbon emulsions ( t1/2 ∼ 20 h vs up to months). Moreover, the aptamer-conjugated NPs show significantly higher tumor-penetration, demonstrating the potential of these imaging agents for therapeutic applications. This report of the synthesis of polymeric aptamer-conjugated PFPE-based 19F MRI CAs with high fluorine content (∼10 wt %) demonstrates that these NPs are exciting candidates for detecting diseases with high imaging sensitivity.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Éteres/química , Imagen por Resonancia Magnética con Fluor-19 , Fluorocarburos/química , Nanopartículas/química , Imagen Óptica , Animales , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA