RESUMEN
Although, historically, Methicillin-Resistant Staphylococcus aureus (MRSA) was restricted to humans, since 2005 these strains emerged in livestock and wildlife. Therefore, a One Health approach was applied to analyze the diversity and characteristics of S. aureus strains isolated from the invasive species of mongoose (Urva auropunctata) in St. Kitts. Fecal samples collected from these animals (n = 81) were cultured on selective agar. The isolated S. aureus strains were identified using MALDI-TOF and further characterized by whole genome sequence analysis. The fecal microbiome study identified the presence of S. aureus in 5 animals. Both MSSA (n = 3) and MRSA (n = 2) strains were identified. The two MRSA isolated were nearly identical ST5 SCCmec IVa (2B) strains. The two MSSA isolated were a new ST7434, pertaining to clonal complex 30, and the other belonged to ST5, but unrelated to the MRSA ST5. The SCCmec IVa (2B) is, however, the main SCCmec in human MRSA of different STs identified in St Kitts, indicating potential horizontal transmission events. In conclusion, a new type of MSSA, ST7434, was found and MRSA ST5 t002 SCCmec IVa (2B) found its way into wildlife on a small Caribbean Island. Further One Health studies are necessary to determine the role of MRSA in wildlife.
RESUMEN
Antimicrobial resistance has been described in all ecosystems, including wildlife. Here we investigated the presence of methicillin-resistant and susceptible staphylococci in both colony-born and wild vervet monkeys (Chlorocebus sabaeus). Through selective isolation, PCR, MALDI-TOF, and whole-genome sequencing, methicillin-resistant and susceptible Staphylococcus spp. isolated from vervet monkeys were characterized. We obtained putatively methicillin-resistant staphylococci from 29 of the 34 nasal samples collected. Strains were identified by MALDI-TOF analysis. Staphylococcus cohnii (n = 15) was the most commonly isolated species, while nine other species were isolated one or two times. PCR analysis indicated that eight [28%] strains were mecA positive. The whole-genome sequencing [WGS] included eight methicillin-resistant strains (S. epidermidis (n = 2), S. cohnii (n = 3), S. arlettae (n = 2) and S. hominis (n = 1)), nine additional S. cohnii strains and two strains that could not be identified by MALDI-TOF, but genetically characterized as one S. cohnii and one S. warneri. Different resistance genes carried by different mobile genetic elements, mainly blaZ (n = 10) and tet(K) (n = 5) were found, while msr(A), cat, fosB, dfrG, erm(C), mph(C) and str were identified in one to three strains. Phylogenetic analysis of the S. cohnii strains based on SNPs indicated four clusters associated with colony born or wild. In addition, one singleton S. cohnii isolated did not form a separate group and clustered within other S. cohnii strains submitted to the NCBI. In this study, we demonstrated the presence of AMR and mobile genetic elements to both colony-born and wild vervet monkeys. We also identified a previously undescribed prevalence of S. cohnii in the nasal flora of these monkeys, which merits further investigation.
RESUMEN
Klebsiella pneumoniae causes a variety of infections in both humans and animals. In this study, we characterised the genomes of human and animal isolates from two diagnostic laboratories on St. Kitts, a small Caribbean island inhabited by a large population of vervet monkeys. In view of the increased chances of direct or indirect contact with humans and other animal species, we used the One Health approach to assess transmission of K. pneumoniae across host species by sequencing 82 presumptive K. pneumoniae clinical isolates from humans (n = 51), vervets (n = 21), horses (n = 5), dogs (n = 4) and a cat (n = 1). Whole genome sequencing (WGS) was carried out using Illumina technology. De novo assembly was performed in CLC Genomics Workbench v.11.0. Single nucleotide polymorphisms were detected using NASP followed by phylogenetic analysis using IQ-TREE. Virulence and antimicrobial resistance gene contents were analysed using the Kleborate and CGE pipelines. WGS-based analysis showed that 72 isolates were K. pneumoniae sensu stricto and five K. quasipneumoniae and five K. variicola. K. pneumoniae isolates belonged to 35 sequence types (ST), three of which were occasionally shared between humans and animals: ST23, ST37 and ST307. The ST23 strains from vervets formed a separate cluster amongst publicly available sequenced ST23 strains, indicating the presence of a specific vervet sublineage. Animal strains harbored fewer resistance genes and displayed distinct virulence traits that appeared to be host-specific in vervet isolates. Our results show that K. pneumoniae infections on this Caribbean island are usually caused by host-specific lineages.
RESUMEN
Limited information is available on antimicrobial susceptibility and clonal distribution of Staphylococcus aureus in the Caribbean region. The aims of this study were to determine the prevalence of antimicrobial resistance among S. aureus isolates and to reveal the frequency and population structure of methicillin-resistant S. aureus (MRSA) in St. Kitts and Nevis, a small island country in the West Indies. A total of 152 S. aureus isolates were collected from consecutive samples submitted to the clinical microbiology laboratory of the main referral hospital from March 2017 to January 2018. Samples came from all units in the hospital and a small number came from external submissions, and comprised a total of 119 clinical specimens and 33 nasal swabs collected from staff and patients. All S. aureus isolates were confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Minimal Inhibitory Concentrations (MICs) of clinically relevant antimicrobials were determined by broth microdilution, and diversity of MRSA isolates was assessed by whole genome sequencing (WGS) analysis. MRSA accounted for 45% (69/152) of the isolates. The highest rates of resistance to non-ß-lactam agents were observed for erythromycin (55%), moxifloxacin (41%), and levofloxacin (40%), whereas resistance to the other drugs tested was ≤6%. All isolates were susceptible to ceftaroline, linezolid, teicoplanin, telavancin, and vancomycin. WGS-based multilocus sequence typing (MLST) showed that approximately 88% of the MRSA isolates belonged to ST8. Phylogenetic analysis on 801 single-nucleotide polymorphisms (SNPs) identified among the MRSA ST8 isolates indicates a large degree of genetic diversity. However, all ST8 strains clustered within the distinct clade that defines the USA300 North American Epidemic lineage (Panton-Valentine Leukocidin (PVL) +, arginine catabolic mobile element (ACME) +, Staphylococcal cassettes chromosome mec IVa (SCCmec IVa)). Our data show high levels of methicillin, macrolide, and fluoroquinolone resistance among S. aureus on St. Kitts and Nevis. The USA300 North American epidemic lineage is responsible for the vast majority of MRSA infections on this Caribbean island.