Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0288280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37616252

RESUMEN

The Hawaiian hoary bat (Lasiurus semotus; Chiroptera: Vespertilionidae), commonly and locally known as 'ope'ape'a, is a solitary, insectivorous, and foliage-roosting species distributed across a wide range of habitats in lowland and montane environments. The species, as with many others in the Hawaiian archipelago, are facing a suite of challenges due to habitat loss and degradation, introduced predators and pests, and climate change. An understanding of the roost requirements of foliage-roosting tree bats is critical to their conservation as these habitats provide several important benefits to survival and reproduction. Because little is known about 'ope'ape'a roost ecology and considerable effort is needed to capture and track bats to roost locations, we examined resource selection at multiple spatial scales-perch location within a roost tree, roost tree, and forest stand. We used a discrete choice modeling approach to investigate day-roost selection and describe attributes of roost trees including those used as maternity roosts. 'Ope'ape'a were found roosting in 19 tree species and in an assortment of landcover types including native and non-native habitats. Our results are largely consistent with findings of other studies of foliage-roosting, insectivorous tree bats where bats selected roost locations that may offer protection and thermoregulatory benefits.


Asunto(s)
Quirópteros , Animales , Femenino , Humanos , Embarazo , Regulación de la Temperatura Corporal , Cambio Climático , Eulipotyphla , Hawaii , Poaceae , Árboles
2.
J Insect Sci ; 21(5)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34519348

RESUMEN

Islands are insular environments that are negatively impacted by invasive species. In Hawai'i, at least 21 non-native bees have been documented to date, joining the diversity of >9,000 non-native and invasive species to the archipelago. The goal of this study is to describe the persistence, genetic diversity, and natural history of the most recently established bee to Hawai'i, Megachile policaris Say, 1831 (Hymenoptera: Megachilidae). Contemporary surveys identify that M. policaris is present on at least O'ahu, Maui, and Hawai'i Island, with the earliest detection of the species in 2017. Furthermore, repeated surveys and observations by community members support the hypothesis that M. policaris has been established on Hawai'i Island from 2017 to 2020. DNA sequenced fragments of the cytochrome oxidase I locus identify two distinct haplotypes on Hawai'i Island, suggesting that at least two founders have colonized the island. In their native range, M. policaris is documented to forage on at least 21 different plant families, which are represented in Hawai'i. Finally, ensemble species distribution models (SDMs) constructed with four bioclimatic variables and occurrence data from the native range of M. policaris predicts high habitat suitability on the leeward side of islands throughout the archipelago and at high elevation habitats. While many of the observations presented in our study fall within the predicted habitat suitability on Hawai'i, we also detected the M. policaris on the windward side of Hawai'i Island suggesting that the SDMs we constructed likely do not capture the bioclimatic niche flexibility of the species.


Asunto(s)
Abejas , Especies Introducidas , Distribución Animal , Animales , Abejas/genética , Abejas/fisiología , Ecosistema , Complejo IV de Transporte de Electrones/genética , Genes de Insecto , Haplotipos , Hawaii , Modelos Estadísticos , Polinización , Dinámica Poblacional
3.
PLoS One ; 13(10): e0205150, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30379835

RESUMEN

Multi-state occupancy modeling can often improve assessments of habitat use and site quality when animal activity or behavior data are available. We examine the use of the approach for evaluating foraging habitat suitability of the endangered Hawaiian hoary bat (Lasiurus cinereus semotus) from classifications of site occupancy based on flight activity levels and feeding behavior. In addition, we used data from separate visual and auditory sources, namely thermal videography and acoustic (echolocation) detectors, jointly deployed at sample sites to compare the effectiveness of each method in the context of occupancy modeling. Video-derived observations demonstrated higher and more accurate estimates of the prevalence of high bat flight activity and feeding events than acoustic sampling methods. Elevated levels of acoustic activity by Hawaiian hoary bats were found to be related primarily to beetle biomass in this study. The approach may have a variety of applications in bat research, including inference about species-resource relationships, habitat quality and the extent to which species intensively use areas for activities such as foraging.


Asunto(s)
Conducta Apetitiva , Quirópteros , Ecosistema , Conducta Alimentaria , Vuelo Animal , Modelos Biológicos , Animales , Ecolocación , Especies en Peligro de Extinción , Hawaii
4.
Ecol Evol ; 7(17): 6669-6679, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28904749

RESUMEN

Bats vocalize during flight as part of the sensory modality called echolocation, but very little is known about whether flying bats consistently call. Occasional vocal silence during flight when bats approach prey or conspecifics has been documented for relatively few species and situations. Bats flying alone in clutter-free airspace are not known to forgo vocalization, yet prior observations suggested possible silent behavior in certain, unexpected situations. Determining when, why, and where silent behavior occurs in bats will help evaluate major assumptions of a primary monitoring method for bats used in ecological research, management, and conservation. In this study, we recorded flight activity of Hawaiian hoary bats (Lasiurus cinereus semotus) under seminatural conditions using both thermal video cameras and acoustic detectors. Simultaneous video and audio recordings from 20 nights of observation at 10 sites were analyzed for correspondence between detection methods, with a focus on video observations in three distance categories for which accompanying vocalizations were detected. Comparison of video and audio detections revealed that a high proportion of Hawaiian hoary bats "seen" on video were not simultaneously "heard." On average, only about one in three visual detections within a night had an accompanying call detection, but this varied greatly among nights. Bats flying on curved flight paths and individuals nearer the cameras were more likely to be detected by both methods. Feeding and social calls were detected, but no clear pattern emerged from the small number of observations involving closely interacting bats. These results may indicate that flying Hawaiian hoary bats often forgo echolocation, or do not always vocalize in a way that is detectable with common sampling and monitoring methods. Possible reasons for the low correspondence between visual and acoustic detections range from methodological to biological and include a number of biases associated with the propagation and detection of sound, cryptic foraging strategies, or conspecific presence. Silent flight behavior may be more prevalent in echolocating bats than previously appreciated, has profound implications for ecological research, and deserves further characterization and study.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA