Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; : e202400684, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119824

RESUMEN

Porous ZIF-8 and ZIF-67 were synthesized via a green steam-assisted dry-gel technique and investigated as potential catalysts for CO2 electroreduction. The synthesis conditions are found to significantly influence the growth of these metal-organic frameworks (MOFs). Notably, the water content employed during synthesis plays a crucial role in shaping the morphological properties of ZIF-8. Specifically, a moderate water content results in the formation of uniform ZIF-8 with a size distribution ranging from 240 to 440 nm. During CO2 electroreduction, these morphological properties exert substantial effects on the selectivity for CO formation, thereby facilitating the production of syngas with adjustable CO: H2 ratios. This feature holds promise for the widespread adoption of syngas as a clean alternative to fossil fuels, offering potential benefits for electricity generation and liquid fuel production.  Despite sharing similar structural properties with ZIF-8, ZIF-67 exhibits distinct performance characterized by its limited selectivity for CO2 electroreduction. This discrepancy is attributed to the different metal centers of the two MOFs, resulting in the distinct activation of CO2 and H2O molecules and their further reduction. This finding highlights the critical role of metal centers in MOF-based materials for electrocatalysis application.

2.
Front Chem ; 10: 931767, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873051

RESUMEN

Carbon monoxide (CO) and formic acid (HCOOH) are suggested to be the most convenient products from electrochemical reduction of CO2 according to techno-economic analysis. To date, tremendous advances have been achieved in the development of catalysts and processes, which make this research topic even more interesting to both academic and industrial sectors. In this work, we report nanostructured Cu-Al materials that are able to convert CO2 to CO and HCOOH with good efficiency. The catalysts are synthesized via a green microwave-assisted solvothermal route, and are composed of Cu2O crystals modified by Al. In KHCO3 electrolyte, these catalysts can selectively convert CO2 to HCOOH and syngas with H2/CO ratios between 1 and 2 approaching one unit faradaic efficiency in a wide potential range. Good current densities of 67 and 130 mA cm-2 are obtained at -1.0 V and -1.3 V vs. reversible hydrogen electrode (RHE), respectively. When switching the electrolyte to KOH, a significant selectivity up to 20% is observed for C2H4 formation, and the current densities achieve 146 and 222 mA cm-2 at -1.0 V and -1.3 V vs. RHE, respectively. Hence, the choice of electrolyte is critically important as that of catalyst in order to obtain targeted products at industrially relevant current densities.

3.
Materials (Basel) ; 14(9)2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-34062766

RESUMEN

The electrocatalytic reduction of CO2 into useful fuels, exploiting rationally designed, inexpensive, active, and selective catalysts, produced through easy, quick, and scalable routes, represents a promising approach to face today's climate challenges and energy crisis. This work presents a facile strategy for the preparation of doped SnO2 as an efficient electrocatalyst for the CO2 reduction reaction to formic acid and carbon monoxide. Zn or Ti doping was introduced into a mesoporous SnO2 matrix via wet impregnation and atomic layer deposition. It was found that doping of SnO2 generates an increased amount of oxygen vacancies, which are believed to contribute to the CO2 conversion efficiency, and among others, Zn wet impregnation resulted the most efficient process, as confirmed by X-ray photoelectron spectroscopy analysis. Electrochemical characterization and active surface area evaluation show an increase of availability of surface active sites. In particular, the introduction of Zn elemental doping results in enhanced performance for formic acid formation, in comparison to un-doped SnO2 and other doped SnO2 catalysts. At -0.99 V versus reversible hydrogen electrode, the total faradaic efficiency for CO2 conversion reaches 80%, while the partial current density is 10.3 mA cm-2. These represent a 10% and a threefold increases for faradaic efficiency and current density, respectively, with respect to the reference un-doped sample. The enhancement of these characteristics relates to the improved charge transfer and conductivity with respect to bare SnO2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA