RESUMEN
The importance of the immediately releasable pool (IRP) of vesicles was proposed to reside in the maintenance of chromaffin cell secretion during the firing of action potentials at basal physiological frequencies. To accomplish this duty, IRP should be replenished as a function of time. We have previously reported that an action potential-like stimulus (APls) triggers the release of ~50% IRP, followed by a fast dynamin-dependent endocytosis and an associated rapid replenishment process. In this work, we investigated the endocytosis and IRP replenishment produced after the exocytosis of variable IRP fractions in mice primary chromaffin cell cultures. Exocytosis and endocytosis were estimated by membrane capacitance measurements obtained in patch-clamped cells. In addition to the dynamin-dependent fast endocytosis activated after the application of APls or 5 ms squared depolarizations, we found that depolarizations lasting 25-50 ms, which release >80% of IRP, are related with a fast dynamin-independent, Ca2+ - and protein kinase C (PKC)-dependent endocytosis (time constant <1 s). PKC inhibitors, such as staurosporine, bisindolylmaleimide XI, PKC 19-31 peptide, and prolonged treatments with high concentrations of phorbol esters, reduced and decelerated this endocytosis. Additionally, we found that the inhibition of PKC also abolished a slow component of replenishment (time constant ~8 s) observed after total IRP exocytosis. Therefore, our results suggest that PKC contributes to the coordination of membrane retrieval and vesicle replenishment mechanisms that occur after the complete exocytosis of IRP.
Asunto(s)
Calcio , Proteína Quinasa C , Ratones , Animales , Proteína Quinasa C/metabolismo , Técnicas de Placa-Clamp , Calcio/metabolismo , Exocitosis/fisiología , Endocitosis/fisiología , DinaminasRESUMEN
The maintenance of the secretory response requires a continuous replenishment of releasable vesicles. It was proposed that the immediately releasable pool (IRP) is important in chromaffin cell secretion during action potentials applied at basal physiological frequencies, because of the proximity of IRP vesicles to voltage-dependent Ca2+ channels. However, previous reports showed that IRP replenishment after depletion is too slow to manage such a situation. In this work, we used patch-clamp measurements of membrane capacitance, confocal imaging of F-actin distribution, and cytosolic Ca2+ measurements with Fura-2 to re-analyze this problem in primary cultures of mouse chromaffin cells. We provide evidence that IRP replenishment has one slow (time constant between 5 and 10 s) and one rapid component (time constant between 0.5 and 1.5 s) linked to a dynamin-dependent fast endocytosis. Both, the fast endocytosis and the rapid replenishment component were eliminated when 500 nM Ca2+ was added to the internal solution during patch-clamp experiments, but they became dominant and accelerated when the cytosolic Ca2+ buffer capacity was increased. In addition, both rapid replenishment and fast endocytosis were retarded when cortical F-actin cytoskeleton was disrupted with cytochalasin D. Finally, in permeabilized chromaffin cells stained with rhodamine-phalloidin, the cortical F-actin density was reduced when the Ca2+ concentration was increased in a range of 10-1000 nM. We conclude that low cytosolic Ca2+ concentrations, which favor cortical F-actin stabilization, allow the activation of a fast endocytosis mechanism linked to a rapid replenishment component of IRP.
Asunto(s)
Calcio/metabolismo , Células Cromafines/metabolismo , Endocitosis/fisiología , Exocitosis/fisiología , Vesículas Secretoras/metabolismo , Actinas/metabolismo , Corteza Suprarrenal/metabolismo , Animales , Canales de Calcio/metabolismo , Células Cultivadas , Femenino , Masculino , RatonesRESUMEN
AIM: It is widely accepted that the exocytosis of synaptic and secretory vesicles is triggered by Ca2+ entry through voltage-dependent Ca2+ channels. However, there is evidence of an alternative mode of exocytosis induced by membrane depolarization but lacking Ca2+ current and intracellular Ca2+ increase. In this work we investigated if such a mechanism contributes to secretory vesicle exocytosis in mouse chromaffin cells. METHODS: Exocytosis was evaluated by patch-clamp membrane capacitance measurements, carbon fibre amperometry and TIRF. Cytosolic Ca2+ was estimated using epifluorescence microscopy and fluo-8 (salt form). RESULTS: Cells stimulated by brief depolatizations in absence of extracellular Ca+2 show moderate but consistent exocytosis, even in presence of high cytosolic BAPTA concentration and pharmacological inhibition of Ca+2 release from intracellular stores. This exocytosis is tightly dependent on membrane potential, is inhibited by neurotoxin Bont-B (cleaves the v-SNARE synaptobrevin), is very fast (saturates with time constant <10 ms), it is followed by a fast endocytosis sensitive to the application of an anti-dynamin monoclonal antibody, and recovers after depletion in <5 s. Finally, this exocytosis was inhibited by: (i) ω-agatoxin IVA (blocks P/Q-type Ca2+ channel gating), (ii) in cells from knock-out P/Q-type Ca2+ channel mice, and (iii) transfection of free synprint peptide (interferes in P/Q channel-exocytic proteins association). CONCLUSION: We demonstrated that Ca2+ -independent and voltage-dependent exocytosis is present in chromaffin cells. This process is tightly coupled to membrane depolarization, and is able to support secretion during action potentials at low basal rates. P/Q-type Ca2+ channels can operate as voltage sensors of this process.
Asunto(s)
Señalización del Calcio/fisiología , Células Cromafines/fisiología , Exocitosis/fisiología , Animales , Calcio/metabolismo , Canales de Calcio Tipo P/metabolismo , Canales de Calcio Tipo Q/metabolismo , Ácido Egtácico/análogos & derivados , Ácido Egtácico/metabolismo , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp/métodosRESUMEN
Under basal conditions the action potential firing rate of adrenal chromaffin cells is lower than 0.5 Hz. The maintenance of the secretory response at such frequencies requires a continuous replenishment of releasable vesicles. However, the mechanism that allows such vesicle replenishment remains unclear. Here, using membrane capacitance measurements on mouse chromaffin cells, we studied the mechanism of replenishment of a group of vesicles released by a single action potential-like stimulus (APls). The exocytosis triggered by APls (ETAP) represents a fraction (40%) of the immediately releasable pool, a group of vesicles highly coupled to voltage dependent calcium channels. ETAP was replenished with a time constant of 0.73 ± 0.11 s, fast enough to maintain synchronous exocytosis at 0.2-0.5 Hz stimulation. Regarding the mechanism involved in rapid ETAP replenishment, we found that it depends on the ready releasable pool; indeed depletion of this vesicle pool significantly delays ETAP replenishment. On the other hand, ETAP replenishment also correlates with a dynamin-dependent fast endocytosis process (τ = 0.53 ± 0.01 s). In this regard, disruption of dynamin function markedly inhibits the fast endocytosis and delays ETAP replenishment, but also significantly decreases the synchronous exocytosis during repetitive APls stimulation at low frequencies (0.2 and 0.5 Hz). Considering these findings, we propose a model in where both the transfer of vesicles from ready releasable pool and fast endocytosis allow rapid ETAP replenishment during low stimulation frequencies.