Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(2)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38257348

RESUMEN

Various technologies have been developed for the safe and efficient storage of hydrogen. Hydrogen storage in its solid form is an attractive option to overcome challenges such as storage and cost. Specifically, hydrogen storage in carbon-based structures is a good solution. To date, numerous theoretical studies have explored hydrogen storage in different carbon structures. Consequently, in this review, density functional theory (DFT) studies on hydrogen storage in graphene-based structures are examined in detail. Different modifications of graphene structures to improve their hydrogen storage properties are comprehensively reviewed. To date, various modified graphene structures, such as decorated graphene, doped graphene, graphene with vacancies, graphene with vacancies-doping, as well as decorated-doped graphene, have been explored to modify the reactivity of pristine graphene. Most of these modified graphene structures are good candidates for hydrogen storage. The DFT-based theoretical studies analyzed in this review should motivate experimental groups to experimentally validate the theoretical predictions as many modified graphene systems are shown to be good candidates for hydrogen storage.

2.
Nanomaterials (Basel) ; 13(8)2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-37110968

RESUMEN

Portland cement (PC) is a material that is indispensable for satisfying recent urban requirements, which demands infrastructure with adequate mechanical and durable properties. In this context, building construction has employed nanomaterials (e.g., oxide metals, carbon, and industrial/agro-industrial waste) as partial replacements for PC to obtain construction materials with better performance than those manufactured using only PC. Therefore, in this study, the properties of fresh and hardened states of nanomaterial-reinforced PC-based materials are reviewed and analyzed in detail. The partial replacement of PC by nanomaterials increases their mechanical properties at early ages and significantly improves their durability against several adverse agents and conditions. Owing to the advantages of nanomaterials as a partial replacement for PC, studies on the mechanical and durability properties for a long-term period are highly necessary.

3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36232492

RESUMEN

A process control agent is an organic additive used to regulate the balance between fracturing and mechanical kneading, which control the size of the as-milled particles. Tributyl phosphate (TBP) is evaluated to act as surface modifier of PbTe, and it is compared with the results obtained using formaldehyde (CH2O). In order to elucidate the nature of the interaction between TBP and the PbTe surface, global and local descriptors were calculated via the density functional theory. First, TBP and CH2O molecules are structurally optimized. Then, vertical ionization energies as well as vertical electron affinities are calculated to elucidate how both molecules behave energetically against removal and electron gain, respectively. The results were compared with those obtained from the electrostatic potential mapped on the van der Waals isosurface. It is inferred that the theoretical insights are useful to propose adsorption modes of TBP and CH2O on the PbTe surface, which are usable to rationalize the facets exposed by PbTe after the surface treatment. The optimized structures of the compound systems showed a close correlation between the surface energy shift (Δγ) and the PbTe facets exhibited. Finally, a Wulff construction was built to compare the usage of TBP and CH2O molecules in PbTe morphology.


Asunto(s)
Formaldehído , Teoría Cuántica , Adsorción , Formaldehído/química , Electricidad Estática
4.
Materials (Basel) ; 15(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36079518

RESUMEN

CO2 adsorption on bare 3d transition-metal nanoclusters and 3d transition-metal nanoclusters supported on pyridinic N3-doped graphene (PNG) was investigated by employing the density functional theory. First, the interaction of Co13 and Cu13 with PNG was analyzed by spin densities, interaction energies, charge transfers, and HUMO-LUMO gaps. According to the interaction energies, the Co13 nanocluster was adsorbed more efficiently than Cu13 on the PNG. The charge transfer indicated that the Co13 nanocluster donated more charges to the PNG nanoflake than the Cu13 nanocluster. The HUMO-LUMO gap calculations showed that the PNG improved the chemical reactivity of both Co13 and Cu13 nanoclusters. When the CO2 was adsorbed on the bare 3d transition-metal nanoclusters and 3d transition-metal nanoclusters supported on the PNG, it experienced a bond elongation and angle bending in both systems. In addition, the charge transfer from the nanoclusters to the CO2 molecule was observed. This study proved that Co13/PNG and Cu13/PNG composites are adequate candidates for CO2 adsorption and activation.

5.
Materials (Basel) ; 15(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35806834

RESUMEN

Graphene with defects is a vital support material since it improves the catalytic activity and stability of nanoparticles. Here, a density functional theory study was conducted to investigate the stability, energy, and reactivity properties of NinPdn (n = 1-3) clusters supported on graphene with different defects (i.e., graphene with monovacancy and pyridinic N-doped graphene with one, two, and three N atoms). On the interaction between the clusters and graphene with defects, the charge was transferred from the clusters to the modified graphene, and it was observed that the binding energy between them was substantially higher than that previously reported for Pd-based clusters supported on pristine graphene. The vertical ionization potential calculated for the clusters supported on modified graphene decreased compared with that calculated for free clusters. In contrast, vertical electron affinity values for the clusters supported on graphene with defects increased compared with those calculated for free clusters. In addition, the chemical hardness calculated for the clusters supported on modified graphene was decreased compared with free clusters, suggesting that the former may exhibit higher reactivity than the latter. Therefore, it could be inferred that graphene with defects is a good support material because it enhances the stability and reactivity of the Pd-based alloy clusters supported on PNG.

6.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34884770

RESUMEN

Nitrogen oxides (NOx) are among the main atmospheric pollutants; therefore, it is important to monitor and detect their presence in the atmosphere. To this end, low-dimensional carbon structures have been widely used as NOx sensors for their outstanding properties. In particular, carbon nanotubes (CNTs) have been widely used as toxic-gas sensors owing to their high specific surface area and excellent mechanical properties. Although pristine CNTs have shown promising performance for NOx detection, several strategies have been developed such as surface functionalization and defect engineering to improve the NOx sensing of pristine CNT-based sensors. Through these strategies, the sensing properties of modified CNTs toward NOx gases have been substantially improved. Therefore, in this review, we have analyzed the defect engineering and surface functionalization strategies used in the last decade to modify the sensitivity and the selectivity of CNTs to NOx. First, the different types of surface functionalization and defect engineering were reviewed. Thereafter, we analyzed experimental, theoretical, and coupled experimental-theoretical studies on CNTs modified through surface functionalization and defect engineering to improve the sensitivity and selectivity to NOx. Finally, we presented the conclusions and the future directions of modified CNTs as NOx sensors.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Nanotubos de Carbono/química , Óxidos de Nitrógeno/análisis , Contaminación del Aire/análisis , Combustibles Fósiles/efectos adversos , Nanotecnología , Emisiones de Vehículos/análisis
7.
Materials (Basel) ; 14(24)2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34947212

RESUMEN

To reduce the CO2 concentration in the atmosphere, its conversion to different value-added chemicals plays a very important role. Nevertheless, the stable nature of this molecule limits its conversion. Therefore, the design of highly efficient and selective catalysts for the conversion of CO2 to value-added chemicals is required. Hence, in this work, the CO2 adsorption on Pt4-xCux (x = 0-4) sub-nanoclusters deposited on pyridinic N-doped graphene (PNG) was studied using the density functional theory. First, the stability of Pt4-xCux (x = 0-4) sub-nanoclusters supported on PNG was analyzed. Subsequently, the CO2 adsorption on Pt4-xCux (x = 0-4) sub-nanoclusters deposited on PNG was computed. According to the binding energies of the Pt4-xCux (x = 0-4) sub-nanoclusters on PNG, it was observed that PNG is a good material to stabilize the Pt4-xCux (x = 0-4) sub-nanoclusters. In addition, charge transfer occurred from Pt4-xCux (x = 0-4) sub-nanoclusters to the PNG. When the CO2 molecule was adsorbed on the Pt4-xCux (x = 0-4) sub-nanoclusters supported on the PNG, the CO2 underwent a bond length elongation and variations in what bending angle is concerned. In addition, the charge transfer from Pt4-xCux (x = 0-4) sub-nanoclusters supported on PNG to the CO2 molecule was observed, which suggests the activation of the CO2 molecule. These results proved that Pt4-xCux (x = 0-4) sub-nanoclusters supported on PNG are adequate candidates for CO2 adsorption and activation.

8.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799914

RESUMEN

Detecting and monitoring air-polluting gases such as carbon monoxide (CO), nitrogen oxides (NOx), and sulfur oxides (SOx) are critical, as these gases are toxic and harm the ecosystem and the human health. Therefore, it is necessary to design high-performance gas sensors for toxic gas detection. In this sense, graphene-based materials are promising for use as toxic gas sensors. In addition to experimental investigations, first-principle methods have enabled graphene-based sensor design to progress by leaps and bounds. This review presents a detailed analysis of graphene-based toxic gas sensors by using first-principle methods. The modifications made to graphene, such as decorated, defective, and doped to improve the detection of NOx, SOx, and CO toxic gases are revised and analyzed. In general, graphene decorated with transition metals, defective graphene, and doped graphene have a higher sensibility toward the toxic gases than pristine graphene. This review shows the relevance of using first-principle studies for the design of novel and efficient toxic gas sensors. The theoretical results obtained to date can greatly help experimental groups to design novel and efficient graphene-based toxic gas sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA