Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Physiol ; 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141823

RESUMEN

Dynamins are GTPases required for pinching vesicles off the plasma membrane once a critical curvature is reached during endocytosis. Here, we probed dynamin function in central synapses by depleting all three dynamin isoforms in postnatal hippocampal neurons down to negligible levels. We found a decrease in the propensity of evoked neurotransmission as well as a reduction in synaptic vesicle numbers. Recycling of synaptic vesicles during spontaneous or low levels of evoked activity were largely impervious to dynamin depletion, while retrieval of synaptic vesicle components at higher levels of activity was partially arrested. These results suggest the existence of balancing dynamin-independent mechanisms for synaptic vesicle recycling at central synapses. Classical dynamin-dependent mechanisms are not essential for retrieval of synaptic vesicle proteins after quantal single synaptic vesicle fusion, but they become more relevant for membrane retrieval during intense, sustained neuronal activity. KEY POINTS: Loss of dynamin 2 does not impair synaptic transmission. Loss of all three dynamin isoforms mostly affects evoked neurotransmission. Excitatory synapse function is more susceptible to dynamin loss. Spontaneous neurotransmission is only mildly affected by loss of dynamins. Single synaptic vesicle endocytosis is largely dynamin independent.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38956176

RESUMEN

Prevailing hypotheses on the mechanisms of antidepressant action posit that antidepressants directly counteract deficiencies in major neurotransmitter signaling systems that underlie depression. The rapidly acting antidepressant ketamine has been postulated to correct excess glutamatergic signaling via glutamatergic antagonism leading to the rescue of neuronal structural deficits and reversal of behavioral symptoms. We studied this premise using systemic administration of the acetylcholinesterase inhibitor physostigmine, which has been shown to rapidly elicit a shorter-term period of depressed mood in humans via cholinergic mechanisms. We observed that physostigmine induces acute stress in tandem with long term depression of glutamate release in the hippocampus of mice. However, ketamine rapidly acts to re-establish glutamatergic synaptic efficacy via postsynaptic signaling and behaviorally masks the reduction in passive coping induced by physostigmine. These results underscore the divergence of synaptic signaling mechanisms underlying mood changes and antidepressant action and highlight how distinct synaptic mechanisms may underlie neuropsychiatric disorders versus their treatment.

3.
Neuropsychopharmacology ; 49(11): 1758-1766, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38898206

RESUMEN

Synaptic plasticity occurs via multiple mechanisms to regulate synaptic efficacy. Homeostatic and Hebbian plasticity are two such mechanisms by which neuronal synapses can be altered. Although these two processes are mechanistically distinct, they converge on downstream regulation of AMPA receptor activity to modify glutamatergic neurotransmission. However, much remains to be explored regarding how these two prominent forms of plasticity interact. Ketamine, a rapidly acting antidepressant, increases glutamatergic transmission via pharmacologically-induced homeostatic plasticity. Here, we demonstrate that Hebbian plasticity mechanisms are still intact in synapses that have undergone homeostatic scaling by ketamine after either systemic injection or perfusion onto hippocampal brain slices. We also investigated this relationship in the context of stress induced by chronic exposure to corticosterone (CORT) to better model the circumstances under which ketamine may be used as an antidepressant. We found that CORT induced an anhedonia-like behavioral phenotype in mice but did not impair long-term potentiation (LTP) induction. Furthermore, corticosterone exposure does not impact the intersection of homeostatic and Hebbian plasticity mechanisms, as synapses from CORT-exposed mice also demonstrated intact ketamine-induced plasticity and LTP in succession. These results provide a mechanistic explanation for how ketamine used for the treatment of depression does not impair the integrity of learning and memory processes encoded by mechanisms such as LTP.


Asunto(s)
Corticosterona , Hipocampo , Ketamina , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Plasticidad Neuronal , Animales , Ketamina/farmacología , Corticosterona/farmacología , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Masculino , Ratones , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Antagonistas de Aminoácidos Excitadores/farmacología , Antidepresivos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Estrés Psicológico/fisiopatología
4.
STAR Protoc ; 5(2): 103089, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38795356

RESUMEN

Generating stable human embryonic stem cells (hESCs) with targeted genetic mutations allows for the interrogation of protein function in numerous cellular contexts while maintaining a relatively high degree of isogenicity. We describe a step-by-step protocol for generating knockout hESC lines with mutations in genes involved in synaptic transmission using CRISPR-Cas9. We describe steps for gRNA design, cloning, stem cell transfection, and clone isolation. We then detail procedures for gene knockout validation and differentiation of stem cells into functional induced neurons.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Células Madre Embrionarias Humanas , Neuronas , Humanos , Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Neuronas/citología , Neuronas/metabolismo , Edición Génica/métodos , Diferenciación Celular/genética , Técnicas de Inactivación de Genes/métodos , ARN Guía de Sistemas CRISPR-Cas/genética , Sinapsis/metabolismo , Sinapsis/genética
5.
Proc Natl Acad Sci U S A ; 121(17): e2303664121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38621124

RESUMEN

Brain-derived neurotrophic factor (BDNF) plays a critical role in synaptic physiology, as well as mechanisms underlying various neuropsychiatric diseases and their treatment. Despite its clear physiological role and disease relevance, BDNF's function at the presynaptic terminal, a fundamental unit of neurotransmission, remains poorly understood. In this study, we evaluated single synapse dynamics using optical imaging techniques in hippocampal cell cultures. We find that exogenous BDNF selectively increases evoked excitatory neurotransmission without affecting spontaneous neurotransmission. However, acutely blocking endogenous BDNF has no effect on evoked or spontaneous release, demonstrating that different approaches to studying BDNF may yield different results. When we suppressed BDNF-Tropomyosin receptor kinase B (TrkB) activity chronically over a period of days to weeks using a mouse line enabling conditional knockout of TrkB, we found that evoked glutamate release was significantly decreased while spontaneous release remained unchanged. Moreover, chronic blockade of BDNF-TrkB activity selectively downscales evoked calcium transients without affecting spontaneous calcium events. Via pharmacological blockade by voltage-gated calcium channel (VGCC) selective blockers, we found that the changes in evoked calcium transients are mediated by the P/Q subtype of VGCCs. These results suggest that BDNF-TrkB activity increases presynaptic VGCC activity to selectively increase evoked glutamate release.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Calcio , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Calcio/metabolismo , Transmisión Sináptica/fisiología , Sinapsis/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Calcio de la Dieta , Receptor trkB/genética , Receptor trkB/metabolismo , Glutamatos/metabolismo
6.
Neuropsychopharmacology ; 49(4): 757-763, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212443

RESUMEN

Neuropsychopharmacology (NPP) offers the option to publish articles in different tiers of an open access (OA) publishing system: Green, Bronze, or Hybrid. Green articles follow a standard access (SA) subscription model, in which readers must pay a subscription fee to access article content on the publisher's website. Bronze articles are selected at the publisher's discretion and offer free availability to readers at the same article processing charge (APC) as Green articles. Hybrid articles are fully OA, but authors pay an increased APC to ensure public access. Here, we aimed to determine whether publishing tier affect the impact and reach of scientific articles in NPP. A sample of 6000 articles published between 2001-2021 were chosen for the analysis. Articles were separated by article type and publication year. Citation counts and Altmetric scores were compared between the three tiers. Bronze articles received significantly more citations than Green and Hybrid articles overall. However, when analyzed by year, Bronze and Hybrid articles received comparable citation counts within the past decade. Altmetric scores were comparable between all tiers, although this effect varied by year. Our findings indicate that free availability of article content on the publisher's website is associated with an increase in citations of NPP articles but may only provide a moderate boost in Altmetric score. Overall, our results suggest that easily accessible article content is most often cited by readers, but that the higher APCs of Hybrid tier publishing may not guarantee increased scholarly or social impact.


Asunto(s)
Publicación de Acceso Abierto , Bibliometría , Factor de Impacto de la Revista
7.
Annu Rev Med ; 75: 129-143, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-37729028

RESUMEN

Major depressive disorder (MDD) is a leading cause of suicide in the world. Monoamine-based antidepressant drugs are a primary line of treatment for this mental disorder, although the delayed response and incomplete efficacy in some patients highlight the need for improved therapeutic approaches. Over the past two decades, ketamine has shown rapid onset with sustained (up to several days) antidepressant effects in patients whose MDD has not responded to conventional antidepressant drugs. Recent preclinical studies have started to elucidate the underlying mechanisms of ketamine's antidepressant properties. Herein, we describe and compare recent clinical and preclinical findings to provide a broad perspective of the relevant mechanisms for the antidepressant action of ketamine.


Asunto(s)
Trastorno Depresivo Mayor , Ketamina , Humanos , Ketamina/uso terapéutico , Depresión/tratamiento farmacológico , Trastorno Depresivo Mayor/tratamiento farmacológico , Antidepresivos/uso terapéutico , Aminas/uso terapéutico
8.
Neuropsychopharmacology ; 49(1): 41-50, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37488280

RESUMEN

Ketamine is an open channel blocker of ionotropic glutamatergic N-Methyl-D-Aspartate (NMDA) receptors. The discovery of its rapid antidepressant effects in patients with depression and treatment-resistant depression fostered novel effective treatments for mood disorders. This discovery not only provided new insight into the neurobiology of mood disorders but also uncovered fundamental synaptic plasticity mechanisms that underlie its treatment. In this review, we discuss key clinical aspects of ketamine's effect as a rapidly acting antidepressant, synaptic and circuit mechanisms underlying its action, as well as how these novel perspectives in clinical practice and synapse biology form a road map for future studies aimed at more effective treatments for neuropsychiatric disorders.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Ketamina , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Receptores de N-Metil-D-Aspartato , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Sinapsis , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Depresión/tratamiento farmacológico
9.
Cell Rep ; 42(10): 113201, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37777959

RESUMEN

Calcium (Ca2+) signaling is tightly regulated within a presynaptic bouton. Here, we visualize Ca2+ signals within hippocampal presynaptic boutons using GCaMP8s tagged to synaptobrevin, a synaptic vesicle protein. We identify evoked presynaptic Ca2+ transients (ePreCTs) that derive from synchronized voltage-gated Ca2+ channel openings, spontaneous presynaptic Ca2+ transients (sPreCTs) that originate from ryanodine sensitive Ca2+ stores, and a baseline Ca2+ signal that arises from stochastic voltage-gated Ca2+ channel openings. We find that baseline Ca2+, but not sPreCTs, contributes to spontaneous glutamate release. We employ photobleaching as a use-dependent tool to probe nano-organization of Ca2+ signals and observe that all three occur in non-overlapping domains within the synapse at near-resting conditions. However, increased depolarization induces intermixing of these Ca2+ domains via both local and non-local synaptic vesicle turnover. Our findings reveal nanosegregation of Ca2+ signals within a presynaptic terminal that derive from multiple sources and in turn drive specific modes of neurotransmission.


Asunto(s)
Sinapsis , Transmisión Sináptica , Transmisión Sináptica/fisiología , Sinapsis/metabolismo , Terminales Presinápticos/metabolismo , Vesículas Sinápticas/metabolismo , Hipocampo/metabolismo , Calcio/metabolismo
10.
Trends Mol Med ; 29(5): 364-375, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36907686

RESUMEN

Acute administration of (R,S)-ketamine (ketamine) produces rapid antidepressant effects that in some patients can be sustained for several days to more than a week. Ketamine blocks N-methyl-d-asparate (NMDA) receptors (NMDARs) to elicit specific downstream signaling that induces a novel form of synaptic plasticity in the hippocampus that has been linked to the rapid antidepressant action. These signaling events lead to subsequent downstream transcriptional changes that are involved in the sustained antidepressant effects. Here we review how ketamine triggers this intracellular signaling pathway to mediate synaptic plasticity which underlies the rapid antidepressant effects and links it to downstream signaling and the sustained antidepressant effects.


Asunto(s)
Ketamina , Humanos , Ketamina/farmacología , Ketamina/uso terapéutico , Ketamina/metabolismo , Depresión/tratamiento farmacológico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Antidepresivos/metabolismo , Hipocampo , Transducción de Señal
11.
Cell Rep ; 42(2): 112042, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36701235

RESUMEN

Rapid release of neurotransmitters in synchrony with action potentials is considered a key hardwired property of synapses. Here, in glutamatergic synapses formed between induced human neurons, we show that action potential-dependent neurotransmitter release becomes progressively desynchronized as synapses mature and age. In this solely excitatory network, the emergence of NMDAR-mediated transmission elicits endoplasmic reticulum (ER) stress leading to downregulation of key presynaptic molecules, synaptotagmin-1 and cysteine string protein α, that synchronize neurotransmitter release. The emergence of asynchronous release with neuronal maturity and subsequent aging is maintained by the high-affinity Ca2+ sensor synaptotagmin-7 and suppressed by the introduction of GABAergic transmission into the network, inhibition of NMDARs, and ER stress. These results suggest that long-term disruption of excitation-inhibition balance affects the synchrony of excitatory neurotransmission in human synapses.


Asunto(s)
Neuronas , Transmisión Sináptica , Humanos , Neuronas/metabolismo , Transmisión Sináptica/fisiología , Sinapsis/metabolismo , Neurotransmisores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Envejecimiento , Calcio/metabolismo
12.
Neuropsychopharmacology ; 48(2): 259-260, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36243770
14.
Neuropsychopharmacology ; 48(1): 54-60, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35995973

RESUMEN

Neuronal and synaptic plasticity are widely used terms in the field of psychiatry. However, cellular neurophysiologists have identified two broad classes of plasticity. Hebbian forms of plasticity alter synaptic strength in a synapse specific manner in the same direction of the initial conditioning stimulation. In contrast, homeostatic plasticities act globally over longer time frames in a negative feedback manner to counter network level changes in activity or synaptic strength. Recent evidence suggests that homeostatic plasticity mechanisms can be rapidly engaged, particularly by fast-acting antidepressants such as ketamine to trigger behavioral effects. There is increasing evidence that several neuropsychoactive compounds either directly elicit changes in synaptic activity or indirectly tap into downstream signaling pathways to trigger homeostatic plasticity and subsequent behavioral effects. In this review, we discuss this recent work in the context of a wider paradigm where homeostatic synaptic plasticity mechanisms may provide novel targets for neuropsychiatric treatment advance.


Asunto(s)
Ketamina , Sinapsis , Plasticidad Neuronal/fisiología , Homeostasis/fisiología , Neuronas , Ketamina/farmacología
15.
Hippocampus ; 32(8): 610-623, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35851733

RESUMEN

Rett syndrome is a leading cause of intellectual disability in females primarily caused by loss of function mutations in the transcriptional regulator MeCP2. Loss of MeCP2 leads to a host of synaptic phenotypes that are believed to underlie Rett syndrome pathophysiology. Synaptic deficits vary by brain region upon MeCP2 loss, suggesting distinct molecular alterations leading to disparate synaptic outcomes. In this study, we examined the contribution of MeCP2's newly described role in miRNA regulation to regional molecular and synaptic impairments. Two miRNAs, miR-101a and miR-203, were identified and confirmed as upregulated in MeCP2 KO mice in the hippocampus and cortex, respectively. miR-101a overexpression in hippocampal cultures led to opposing effects at excitatory and inhibitory synapses and in spontaneous and evoked neurotransmission, revealing the potential for a single miRNA to broadly regulate synapse function in the hippocampus. These results highlight the importance of regional alterations in miRNA expression and the specific impact on synaptic function with potential implications for Rett syndrome.


Asunto(s)
MicroARNs , Síndrome de Rett , Animales , Femenino , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Sinapsis/fisiología , Transmisión Sináptica/genética
16.
STAR Protoc ; 3(2): 101443, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35677613

RESUMEN

Immunolabeling of surface AMPA receptors (AMPARs) can be used for in vivo or ex vivo examination of synaptic scaling, a type of homeostatic plasticity. Here, we present a protocol to analyze changes in synaptic weights using immunohistochemistry for surface AMPARs coupled with optical imaging analysis. We detail immunostaining of AMPARs in mouse brain sections, followed by confocal imaging of surface AMPARs in dendritic region of hippocampal CA1. We then describe using Fiji/ImageJ and rank order plots for analyzing synaptic weight. For complete details on the use and execution of this protocol, please refer to Suzuki et al. (2021).


Asunto(s)
Hipocampo , Receptores AMPA , Animales , Hipocampo/diagnóstico por imagen , Homeostasis , Ratones , Receptores AMPA/metabolismo
17.
Elife ; 112022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35420542

RESUMEN

Synapses maintain both action potential-evoked and spontaneous neurotransmitter release; however, organization of these two forms of release within an individual synapse remains unclear. Here, we used photobleaching properties of iGluSnFR, a fluorescent probe that detects glutamate, to investigate the subsynaptic organization of evoked and spontaneous release in primary hippocampal cultures. In nonneuronal cells and neuronal dendrites, iGluSnFR fluorescence is intensely photobleached and recovers via diffusion of nonphotobleached probes with a time constant of ~10 s. After photobleaching, while evoked iGluSnFR events could be rapidly suppressed, their recovery required several hours. In contrast, iGluSnFR responses to spontaneous release were comparatively resilient to photobleaching, unless the complete pool of iGluSnFR was activated by glutamate perfusion. This differential effect of photobleaching on different modes of neurotransmission is consistent with a subsynaptic organization where sites of evoked glutamate release are clustered and corresponding iGluSnFR probes are diffusion restricted, while spontaneous release sites are broadly spread across a synapse with readily diffusible iGluSnFR probes.


Asunto(s)
Ácido Glutámico , Transmisión Sináptica , Hipocampo , Fotoblanqueo , Sinapsis/fisiología , Transmisión Sináptica/fisiología
18.
Cell ; 185(1): 62-76, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34963057

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Encéfalo/metabolismo , Trastornos Mentales/metabolismo , Plasticidad Neuronal/fisiología , Neuropéptidos/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Homeostasis/fisiología , Humanos , Trastornos Mentales/tratamiento farmacológico , Trastornos Mentales/genética , Neurogénesis/fisiología , Neuropéptidos/genética , Psicotrópicos/farmacología , Psicotrópicos/uso terapéutico , Transmisión Sináptica/efectos de los fármacos , Resultado del Tratamiento
19.
Cell Rep ; 37(5): 109918, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731624

RESUMEN

Ketamine is a noncompetitive glutamatergic N-methyl-d-aspartate receptor (NMDAR) antagonist that exerts rapid antidepressant effects. Preclinical studies identify eukaryotic elongation factor 2 kinase (eEF2K) signaling as essential for the rapid antidepressant action of ketamine. Here, we combine genetic, electrophysiological, and pharmacological strategies to investigate the role of eEF2K in synaptic function and find that acute, but not chronic, inhibition of eEF2K activity induces rapid synaptic scaling in the hippocampus. Retinoic acid (RA) signaling also elicits a similar form of rapid synaptic scaling in the hippocampus, which we observe is independent of eEF2K functioni. The RA signaling pathway is not required for ketamine-mediated antidepressant action; however, direct activation of the retinoic acid receptor α (RARα) evokes rapid antidepressant action resembling ketamine. Our findings show that ketamine and RARα activation independently elicit a similar form of multiplicative synaptic scaling that is causal for rapid antidepressant action.


Asunto(s)
Antidepresivos/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Ketamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Neuronas/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Tretinoina/farmacología , Animales , Región CA1 Hipocampal/metabolismo , Quinasa del Factor 2 de Elongación/genética , Quinasa del Factor 2 de Elongación/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Receptor alfa de Ácido Retinoico/agonistas , Receptor alfa de Ácido Retinoico/genética , Receptor alfa de Ácido Retinoico/metabolismo , Sinapsis/metabolismo , Factores de Tiempo
20.
Cell Rep ; 36(7): 109513, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34407417

RESUMEN

Ketamine produces rapid antidepressant action in patients with major depression or treatment-resistant depression. Studies have identified brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), as necessary for the antidepressant effects and underlying ketamine-induced synaptic potentiation in the hippocampus. Here, we delete BDNF or TrkB in presynaptic CA3 or postsynaptic CA1 regions of the Schaffer collateral pathway to investigate the rapid antidepressant action of ketamine. The deletion of Bdnf in CA3 or CA1 blocks the ketamine-induced synaptic potentiation. In contrast, ablation of TrkB only in postsynaptic CA1 eliminates the ketamine-induced synaptic potentiation. We confirm BDNF-TrkB signaling in CA1 is required for ketamine's rapid behavioral action. Moreover, ketamine application elicits dynamin1-dependent TrkB activation and downstream signaling to trigger rapid synaptic effects. Taken together, these data demonstrate a requirement for BDNF-TrkB signaling in CA1 neurons in ketamine-induced synaptic potentiation and identify a specific synaptic locus in eliciting ketamine's rapid antidepressant effects.


Asunto(s)
Antidepresivos/farmacología , Ketamina/farmacología , Receptor trkB/metabolismo , Transducción de Señal , Sinapsis/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Región CA1 Hipocampal/efectos de los fármacos , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/metabolismo , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Transducción de Señal/efectos de los fármacos , Sinapsis/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA