Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36840140

RESUMEN

Blueberry roots are inefficient in taking up water and nutrients, a fact partially related to their scarcity of root hairs, but they improve nutrient uptake by associating with ericoid mycorrhizal and endophytic fungi. However, the benefits of this association are both cultivar- and fungus-dependent. Our objective was to assess the effect of inoculation with three native fungal strains (Oidiodendron maius A, O. maius BP, and Acanthomyces lecanii BC) on plantlet growth, plantlet survival, and nitrogen (N) absorption of the southern highbush blueberry (SHB) cultivars Biloxi and Misty. The fungal strains were inoculated into the peat-based substrate for growing blueberry cultivars, and plantlets produced by micropropagation were transplanted and grown for four months. The three inoculated strains positively affected the survival percentage in at least one of the cultivars tested, whereas O. maius BP positively affected plant biomass, N derived from fertilizer absorption, N content, and plant N recovery (%) in both Biloxi and Misty. Our results show that the O. maius BP strain may prove useful as a bio-inoculant to improve blueberry production during the nursery stage.

2.
World J Microbiol Biotechnol ; 38(7): 114, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35578144

RESUMEN

Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.


Asunto(s)
Antiinfecciosos , Complejo Burkholderia cepacia , Burkholderia , Micotoxinas , Antiinfecciosos/metabolismo , Burkholderia/metabolismo , Complejo Burkholderia cepacia/genética , Ácido Fusárico/metabolismo , Genoma Bacteriano , Micotoxinas/metabolismo
3.
Microbiol Res ; 206: 50-59, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29146260

RESUMEN

Fusaric acid (FA) is a fungal metabolite produced by several Fusarium species responsible for wilts and root rot diseases of a great variety of plants. Bacillus spp. and Pseudomonas spp. have been considered as promising biocontrol agents against phytopathogenic Fusarium spp., however it has been demonstrated that FA negatively affects growth and production of some antibiotics in these bacteria. Thus, the capability to degrade FA would be a desirable characteristic in bacterial biocontrol agents of Fusarium wilt. Taking this into account, bacteria isolated from the rhizosphere of barley were screened for their ability to use FA as sole carbon and energy source. One strain that fulfilled this requirement was identified according to sequence analysis of 16S rRNA, gyrB and recA genes as Burkholderia ambifaria. This strain, designated T16, was able to grow with FA as sole carbon, nitrogen and energy source and also showed the ability to detoxify FA in barley seedlings. This bacterium also exhibited higher growth rate, higher cell densities, longer survival, higher levels of indole-3-acetic acid (IAA) production, enhanced biofilm formation and increased resistance to different antibiotics when cultivated in Luria Bertani medium at pH 5.3 compared to pH 7.3. Furthermore, B. ambifaria T16 showed distinctive plant growth-promoting features, such as siderophore production, phosphate-solubilization, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, in vitro antagonism against Fusarium spp. and improvement of grain yield when inoculated to barley plants grown under greenhouse conditions. This strain might serve as a new source of metabolites or genes for the development of novel FA-detoxification systems.


Asunto(s)
Antibiosis/fisiología , Fenómenos Fisiológicos Bacterianos , Agentes de Control Biológico , Burkholderia/metabolismo , Ácido Fusárico/metabolismo , Fusarium/crecimiento & desarrollo , Micotoxinas/metabolismo , Desarrollo de la Planta , Antifúngicos/metabolismo , Argentina , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biopelículas/crecimiento & desarrollo , Burkholderia/genética , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación , Liasas de Carbono-Carbono/metabolismo , Girasa de ADN/genética , Farmacorresistencia Microbiana , Ácido Fusárico/efectos adversos , Fusarium/efectos de los fármacos , Fusarium/metabolismo , Fusarium/patogenicidad , Genes Bacterianos/genética , Hordeum/microbiología , Concentración de Iones de Hidrógeno , Ácidos Indolacéticos/metabolismo , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo , Fosfatos/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Raíces de Plantas/microbiología , ARN Ribosómico 16S/genética , Rec A Recombinasas/genética , Rizosfera , Plantones , Análisis de Secuencia , Análisis de Secuencia de ADN , Sideróforos/metabolismo
4.
Microbiol Res ; 180: 40-8, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26505310

RESUMEN

Plant growth promoting rhizobacteria (PGPR) are potential agents to control plant pathogens and their combined use with biopesticides such as phosphites may constitute a novel strategy to incorporate in disease management programs. In the present study, 11 bacterial isolates were selected on the basis of their antagonistic activity against Macrophomina phaseolina in dual-culture tests, and their plant growth promoting traits. Selected isolates were characterised on the basis of auxin and siderophore production, phosphate solubilisation and rep-PCR genomic fingerprinting. Two of these isolates, identified as Pseudomonas fluorescens 9 and Bacillus subtilis 54, were further evaluated for their inhibitory capacity against M. phaseolina using in vitro (on soybean seeds) and in vivo (greenhouse assay) tests. Both bacteria were applied individually as well as in combined treatment with manganese phosphite as seed treatments. Damage severity on soybean seeds was significantly reduced, compared with the untreated control, by both bacterial strains; however, the individual application of phosphite showed to be least effective in controlling M. phaseolina. Interestingly, the phosphite treatment improved its performance under greenhouse conditions compared to the results from the in vitro assays. In the greenhouse trials, the greatest reductions in disease severity were achieved when strain P. fluorescens 9 was applied singly or when strain B. subtilis 54 was combined with manganese phosphite, achieving 82% of control in both cases. This work is the first to report the control of M. phaseolina using combined treatment with PGPR and phosphite under greenhouse conditions.


Asunto(s)
Glycine max/microbiología , Manganeso/farmacología , Fosfitos/farmacología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Microbiología del Suelo , Antibiosis/efectos de los fármacos , Antifúngicos/farmacología , Ascomicetos/aislamiento & purificación , Bacillus subtilis/aislamiento & purificación , Bacillus subtilis/fisiología , Basidiomycota/aislamiento & purificación , Ácidos Indolacéticos/metabolismo , Control Biológico de Vectores/métodos , Raíces de Plantas/microbiología , Pseudomonas fluorescens/aislamiento & purificación , Pseudomonas fluorescens/fisiología , Rhizobium/genética , Rhizobium/aislamiento & purificación , Saccharomycetales/aislamiento & purificación , Saccharomycetales/fisiología
5.
PLoS One ; 10(3): e0119426, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793893

RESUMEN

The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%), while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands.


Asunto(s)
Agricultura , Bacterias/clasificación , Bacterias/genética , Bosques , Microbiología del Suelo , Argentina , Biodiversidad , Código de Barras del ADN Taxonómico , Filogenia , ARN Ribosómico 16S/genética , Suelo/química
6.
ScientificWorldJournal ; 2013: 519603, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24302859

RESUMEN

The genetic diversity among 31 putative Azotobacter isolates obtained from agricultural and non-agricultural soils was assessed using rep-PCR genomic fingerprinting and identified to species level by ARDRA and partial 16S rRNA gene sequence analysis. High diversity was found among the isolates, identified as A. chroococcum, A. salinestris, and A. armeniacus. Selected isolates were characterized on the basis of phytohormone biosynthesis, nitrogenase activity, siderophore production, and phosphate solubilization. Indole-3 acetic-acid (IAA), gibberellin (GA3) and zeatin (Z) biosynthesis, nitrogenase activity, and siderophore production were found in all evaluated strains, with variation among them, but no phosphate solubilization was detected. Phytohormones excreted to the culture medium ranged in the following concentrations: 2.2-18.2 µ g IAA mL(-1), 0.3-0.7 µ g GA3 mL(-1), and 0.5-1.2 µ g Z mL(-1). Seed inoculations with further selected Azotobacter strains and treatments with their cell-free cultures increased the number of seminal roots and root hairs in wheat seedlings. This latter effect was mimicked by treatments with IAA-pure solutions, but it was not related to bacterial root colonization. Our survey constitutes a first approach to the knowledge of Azotobacter species inhabiting Argentinean soils in three contrasting geographical regions. Moreover, this phenotypic characterization constitutes an important contribution to the selection of Azotobacter strains for biofertilizer formulations.


Asunto(s)
Azotobacter/genética , Fertilizantes/microbiología , Desarrollo de la Planta , Microbiología del Suelo , Argentina , Azotobacter/efectos de los fármacos , Azotobacter/metabolismo , Secuencia de Bases , Dermatoglifia del ADN/métodos , Datos de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Triticum/crecimiento & desarrollo
7.
Syst Appl Microbiol ; 25(3): 423-33, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12421080

RESUMEN

The genomic diversity among photosynthetic rhizobia from northeast Argentina was assessed. Forty six isolates obtained from naturally occurring stem and root nodules of Aeschynomene rudis plants were analyzed by three molecular typing methods with different levels of taxonomic resolution: repetitive sequence-based PCR (rep-PCR) genomic fingerprinting with BOX and REP primers, amplified 16S rDNA restriction analysis (ARDRA), and 16S-23S rDNA intergenic spacer-restriction fragment length polymorphism (IGS-RFLP) analysis. The in vivo absorption spectra of membranes of strains were similar in the near infrared region with peaks at 870 and 800 nm revealing the presence of light harvesting complex I, bacteriochlorophyll-binding polypeptides (LHI-Bchl complex). After extraction with acetone-methanol the spectra differed in the visible part displaying peaks belonging to canthaxanthin or spirilloxanthin as the main carotenoid complement. The genotypic characterization by rep-PCR revealed a high level of genomic diversity among the isolates and almost all the photosynthetic ones have identical ARDRA patterns and fell into one cluster different from Bradyrhizobium japonicum and Bradyrhizobium elkanii. In the combined analysis of ARDRA and rep-PCR fingerprints, 7 clusters were found including most of the isolates. Five of those contained only photosynthetic isolates; all canthaxanthin-containing strains grouped in one cluster, most of the other photosynthetic isolates were grouped in a second large cluster, while the remaining three clusters contained a few strains. The other two clusters comprising reference strains of B. japonicum and B. elkanii, respectively. The IGS-RFLP analysis produced similar clustering for almost all the strains. The 16S rRNA gene sequence of one representative isolate was determined and the DNA sequence analysis confirmed the position of photosynthetic rhizobia in a distinct phylogenetic group within the Bradyrhizobium rDNA cluster.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano/análisis , Fabaceae/microbiología , Rhizobium/clasificación , Rhizobium/genética , Argentina , Carotenoides/metabolismo , Dermatoglifia del ADN/métodos , ADN Espaciador Ribosómico/análisis , Genotipo , Datos de Secuencia Molecular , Fotosíntesis , Filogenia , Raíces de Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , ARN Ribosómico 23S/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA