Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 13: 974188, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36059465

RESUMEN

High doses of interleukin-2 (IL-2) have been used for the treatment of melanoma and renal cell carcinoma, but this therapy has limited efficacy, with a ~15% response rate. Remarkably, 7%-9% of patients achieve complete or long-lasting responses. Many patients treated with IL-2 experienced an expansion of regulatory T cells (Tregs), specifically the expansion of ICOS+ highly suppressive Tregs, which correlate with worse clinical outcomes. This partial efficacy together with the high toxicity associated with the therapy has limited the use of IL-2-based therapy. Taking into account the understanding of IL-2 structure, signaling, and in vivo functions, some efforts to improve the cytokine properties are currently under study. In previous work, we described an IL-2 mutein with higher antitumor activity and less toxicity than wtIL-2. Mutein was in silico designed for losing the binding capacity to CD25 and for preferential stimulation of effector cells CD8+ and NK cells but not Tregs. Mutein induces a higher anti-metastatic effect than wtIL-2, but the extent of the in vivo antitumor activity was still unexplored. In this work, it is shown that mutein induces a strong antitumor effect on four primary tumor models, being effective even in those models where wtIL-2 does not work. Furthermore, mutein can change the in vivo balance between Tregs and T CD8+ memory/activated cells toward immune activation, in both healthy and tumor-bearing mice. This change reaches the tumor microenvironment and seems to be the major explanation for mutein efficacy in vivo.


Asunto(s)
Linfocitos T CD8-positivos , Interleucina-2 , Neoplasias , Linfocitos T Reguladores , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Inmunoterapia , Interleucina-2/genética , Interleucina-2/inmunología , Melanoma , Ratones , Mutación , Neoplasias/tratamiento farmacológico , Linfocitos T Reguladores/inmunología , Microambiente Tumoral
2.
J Chem Inf Model ; 61(4): 1913-1920, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33765385

RESUMEN

Interleukin (IL) 2 and IL15 are two members of the common gamma chain cytokine family, involved in the regulation of the T cell differentiation process. Both molecules use a specific alpha subunit, IL2Rα and IL15Rα, and share the same beta and gamma chains signaling receptors. The presence of the specific alpha subunit modulates the T cell ability to compete for both soluble cytokines while the beta and gamma subunits are responsible for the signal transduction. Recent experimental results point out that the specific alpha subunits modulate the capacity of IL2 and IL15 to induce the differentiation of stimulated T cells. In other membrane receptors, the outcome of the signal transduction has been associated with the strength of the interaction of the signaling subunits. Here, we investigate how IL2Rα and IL15Rα modulate the stability of their signaling complexes by combining molecular dynamics simulations and free energy calculations. Our simulations predict that IL2Rα binding destabilizes the ß-γc interaction mediated by IL2, while IL15Rα has the opposite effect. These results explain the ability of IL2Rα and IL15Rα to modulate the signaling outcome and suggest new strategies for the development of better CD8+ T cell differentiation protocols for adoptive cell transfer (ACT).


Asunto(s)
Subunidad alfa del Receptor de Interleucina-15 , Interleucina-2 , Subunidad gamma Común de Receptores de Interleucina/genética , Interleucina-15 , Subunidad alfa del Receptor de Interleucina-2 , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA