Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Tree Physiol ; 27(2): 251-60, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17241967

RESUMEN

Wood density, a gross measure of wood mass relative to wood volume, is important in our understanding of stem volume growth, carbon sequestration and leaf water supply. Disproportionate changes in the ratio of wood mass to volume may occur at the level of the whole stem or the individual cell. In general, there is a positive relationship between temperature and wood density of eucalypts, although this relationship has broken down in recent years with wood density decreasing as global temperatures have risen. To determine the anatomical causes of the effects of temperature on wood density, Eucalyptus grandis W. Hill ex Maiden seedlings were grown in controlled-environment cabinets at constant temperatures from 10 to 35 degrees C. The 20% increase in wood density of E. grandis seedlings grown at the higher temperatures was variously related to a 40% reduction in lumen area of xylem vessels, a 10% reduction in the lumen area of fiber cells and a 10% increase in fiber cell wall thickness. The changes in cell wall characteristics could be considered analogous to changes in carbon supply. Lumen area of fiber cells declined because of reduced fiber cell expansion and increased fiber cell wall thickening. Fiber cell wall thickness was positively related to canopy CO2 assimilation rate (Ac), which increased 26-fold because of a 24-fold increase in leaf area and a doubling in leaf CO2 assimilation rate from minima at 10 and 35 degrees C to maxima at 25 and 30 degrees C. Increased Ac increased seedling volume, biomass and wood density; but increased wood density was also related to a shift in partitioning of seedling biomass from roots to stems as temperature increased.


Asunto(s)
Eucalyptus/crecimiento & desarrollo , Fotosíntesis/fisiología , Plantones/crecimiento & desarrollo , Temperatura , Madera/crecimiento & desarrollo , Biomasa , Eucalyptus/anatomía & histología , Eucalyptus/fisiología , Plantones/anatomía & histología , Plantones/fisiología , Madera/anatomía & histología , Xilema/crecimiento & desarrollo
2.
Tree Physiol ; 26(1): 35-42, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16203712

RESUMEN

Wood density influences both the physiological function and economic value of tree stems. We examined the relationship between phosphorus (P) supply and stem wood density of Eucalyptus grandis Hill ex Maiden seedlings grown with varying soil P additions and determined how changes in wood anatomy and biomass partitioning affect the relationship. Plant height, stem diameter and total biomass increased by 400-500% with increasing P supply. Stem wood density decreased sharply from 520 to 380 kg m(-3) as P supply increased to 70 mg P kg(soil) (-1). Further increases in P supply to 1000 mg P kg(soil) (-1) had no effect on wood density. The increase in wood density at low soil P supply arose principally from enhanced secondary wall thickening of stem fiber cells. Cell wall thickness increased from 3.6 to 4.5 microm as soil P supply decreased. Because fiber cell diameter was independent of soil P (12 microm +/- 0.3), the proportion of the stem occupied by cell wall material increased as P supply declined. The enhanced secondary wall thickening of stem fiber cells at low P supply was not associated with changes in whole-plant biomass partitioning. Instead, low P supply appeared to alter biomass partitioning within the stem in favor of secondary wall thickening. Thus, increased wood density in E. grandis seedlings grown at low P soil supply was associated with inhibited stem cambial activity, resulting in an increased proportion of photoassimilates available for secondary wall thickening of fiber cells.


Asunto(s)
Eucalyptus/anatomía & histología , Fósforo/provisión & distribución , Tallos de la Planta/anatomía & histología , Plantones/anatomía & histología , Madera/anatomía & histología , Eucalyptus/crecimiento & desarrollo , Suelo/análisis , Madera/citología
3.
J Exp Bot ; 52(364): 2127-33, 2001 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-11604451

RESUMEN

Plants growing in soils typically experience a mixture of loose and compact soil. The hypothesis that the proportion of a root system exposed to compact soil and/or the timing at which this exposure occurs determines shoot growth responses was tested. Broccoli (Brassica oleracea var. italica cv. Greenbelt) seedlings were grown in pot experiments with compact, loose and localized soil compaction created by either horizontal (compact subsoils 75 or 150 mm below loose topsoil) or vertical (adjacent compact and loose columns of soil) configurations of loose (1.2 Mg m(-3)) and compact (1.8 Mg m(-3)) soil. Entirely compact soil reduced leaf area by up to 54%, relative to loose soil. When compaction was localized, only the vertical columns of compact and loose soil reduced leaf area (by 30%). Neither the proportion of roots in compact soil nor the timing of exposure could explain the differing shoot growth responses to localized soil compaction. Instead, the strong relationship between total root length and leaf area (r(2)=0.92) indicated that localized soil compaction reduced shoot growth only when it suppressed total root length. This occurred when isolated root axes of the same plant were exposed to vertical columns of compact and loose soil. When a single root axis grew through loose soil into either a shallow or deep compact subsoil, compensatory root growth in the loose soil maintained total root length and thus shoot growth was unaffected. These contrasting root systems responses to localized soil compaction may explain the variable shoot growth responses observed under heterogeneous conditions.


Asunto(s)
Adaptación Fisiológica , Brassica/crecimiento & desarrollo , Suelo/análisis , Fenómenos Biomecánicos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Transducción de Señal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA