Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosens Bioelectron ; 169: 112651, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002794

RESUMEN

Paper-based sensors can be exploited to develop low-cost, disposable, and rapid assays for the detection of a large variety of analytes. We report a paper-based sensor system for a point-of-care (POC) nucleic acid amplification test that can quantitatively detect multiple genes from different pathogens. The POC system combines a paper sensor chip and a portable instrument, which is built on an Internet of Things (IoT) platform. The paper-based sensor provides the functions of reagent storage, sample transportation, and nucleic acid amplification. The IoT instrument uses an Arduino microcontroller to control temperature, collect fluorescence images, and store the data in cloud storage via a WiFi network. A compact fluorescence reader was designed to measure fluorescence images of the amplicons during a loop-mediated isothermal amplification reaction in real-time. The real-time detection capability enables the quantitative analysis of target genes. The results show that the paper-based sensor cam distinguish multiple genes of the genomic DNA extracted from Escherichia coli and Campylobacter jejuni, with the concentration as low as 2 × 103 copies/µL. The affordable instrument, in conjunction with the disposable paper sensor chip, would have a great potential for POC detections of pathogens.


Asunto(s)
Técnicas Biosensibles , Internet de las Cosas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico
2.
Nanotechnology ; 31(37): 375302, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32485684

RESUMEN

This paper reports an imprint and transfer approach for the rapid and inexpensive fabrication of the ultra-thin freestanding plasmonic membrane (FPM) that supports surface plasmon resonances. The imprint and transfer fabrication method involves the soft imprint lithography on an ultrathin polymer film, transfer of the perforated polymer film to a supporting frame, subsequent deposition of gold, and final removal of the polymer film. Without using any sophisticated lithography and etching processes, the imprint and transfer method can produce freestanding gold membranes with 2D arrays of submicrometer-sized holes that support plasmonic modes in the mid-wavelength infrared (mid-IR) range. Two FPM devices with an array constant of 4.0 and 2.5 µm have been simulated, fabricated, and measured for their transmittance characteristics. The fabricated FPMs exhibit surface plasmon polariton Bloch mode and extraordinary optical transmission (EOT) with the enhanced local field around the membrane. The effects of membrane thickness and angle dispersion on the FPM were investigated to show the tuning of EOT modes in IR. Furthermore, we demonstrated the refractometric sensing and enhanced IR absorption of the FPM device for its potential in chemical and biomolecule sensing applications.

3.
J Biophotonics ; 13(7): e202000060, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32176462

RESUMEN

Nucleic acid tests have been widely used for diagnosis of diseases by detecting the relevant genetic markers that are usually amplified using polymerase chain reaction (PCR). This work reports the use of a plasmonic device as an efficient and low-cost PCR thermocycler to facilitate nucleic acid-based diagnosis. The thermoplasmonic device, consisting of a one-dimensional metal grating, exploited the strong light absorption of plasmonic resonance modes to heat up PCR reagents using a near-infrared laser source. The plasmonic device also integrated a thin-film thermocouple on the metal grating to monitor the sample temperature. The plasmonic thermocycler is capable of performing a PCR amplification cycle in ~2.5 minutes. We successfully demonstrated the multiplex and real-time PCR amplifications of the antibiotic resistance genes using the genomic DNAs extracted from Acinetobacter baumannii, Klebsiella pneumonia, Escherichia coli and Campylobacter.


Asunto(s)
Calefacción , Ácidos Nucleicos , ADN , Reacción en Cadena de la Polimerasa , Temperatura
4.
Analyst ; 143(11): 2448-2458, 2018 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-29748684

RESUMEN

Photonic crystals (PhCs) and plasmonic nanostructures offer the unprecedented capability to control the interaction of light and biomolecules at the nanoscale. Based on PhC and plasmonic phenomena, a variety of analytical techniques have been demonstrated and successfully implemented in many fields, such as biological sciences, clinical diagnosis, drug discovery, and environmental monitoring. During the past decades, PhC and plasmonic technologies have progressed in parallel with their pros and cons. The merging of photonic crystals with plasmonics will significantly improve biosensor performances and enlarge the linear detection range of analytical targets. Here, we review the state-of-the-art biosensors that combine PhC and plasmonic nanomaterials for quantitative analysis. The optical mechanisms of PhCs, plasmonic crystals, and metal nanoparticles (NPs) are presented, along with their integration and potential applications. By explaining the optical coupling of photonic crystals and plasmonics, the review manifests how PhC-plasmonic hybrid biosensors can achieve the advantages, including high sensitivity, low cost, and short assay time as well. The review also discusses the challenges and future opportunities in this fascinating field.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoestructuras , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA