RESUMEN
We employed molecular dynamic simulations (MD) and the Bennett's acceptance ratio method to compute the free energy of transfer, ΔGtrans, of phenol, methane, and 5-fluorouracil (5-FU), between bulk water and water-pNIPAM mixtures of different polymer volume fractions, Ïp. For this purpose, we first calculate the solvation free energies in both media to obtain ΔGtrans. Phenol and 5-FU (a medication used to treat cancer) attach to the pNIPAM surface so that they show negative values of ΔGtrans irrespective of temperature (above or below the lower critical solution temperature of pNIPAM, Tc). Conversely, methane switches the ΔGtrans sign when considering temperatures below (positive) and above (negative) Tc. In all cases, and contrasting with some theoretical predictions, ΔGtrans maintains a linear behavior with the pNIPAM concentration up to large polymer densities. We have also employed MD to compute the diffusion coefficient, D, of phenol in water-pNIPAM mixtures as a function of Ïp in the diluted limit. Both ΔGtrans and D as a function of Ïp are required inputs to obtain the release halftime of hollow pNIPAM microgels through Dynamic Density Functional Theory (DDFT). Our scaling strategy captures the experimental value of 2200 s for 50 µm radius microgels with no cavity, for Ïp ≃ 0.83 at 315 K.
Asunto(s)
Microgeles , Simulación de Dinámica Molecular , Hidrogeles , Fenol , Teoría Funcional de la Densidad , Polímeros , Agua , Metano , FluorouraciloRESUMEN
In this paper we study the structure and phase behavior of binary mixtures of charged particles at low ionic strength. Due to the large size asymmetry between both species, light scattering measurements give us access only to the partial static structure factor that corresponds to the big particles. We observe that the addition of small charged colloids produces a decrease of the main peak of the measured static structure factor and a shift to larger scattering vector values. This finding is in agreement with theory based on integral equations with the Hypernetted-Chain Closure (HNC) relation. The effective interaction between two big particles due to the presence of small particles is obtained by a HNC inversion scheme and used in numerical simulations that adequately reproduce the experiments. We find that the presence of small particles induces an electrostatic depletion screening among the big colloids, creating around them an exclusion zone for the small charged colloids greater than that caused in the case of neutral small colloids, which in turn augments the depletion effect.
RESUMEN
Brownian dynamics simulations (BDS) of sedimentation and irreversible adsorption of colloidal particles on a planar surface were carried out at bulk particle volume fractions (φ) in the range 0.05 to 0.25. The sedimentation and adsorption of colloidal particles were simulated as a non-sequential process that allows simultaneous settling and adsorption of particles. A kinetic model for the formation of particle monolayers based on the available surface fraction (θ(A)) is proposed to predict simulation results. The simulations show a value of 0.625 for the maximum fractional surface coverage (θ(∞)) and a monolayer structure insensitive to φ. However, the kinetic order of the monolayer formation process has a strong dependence with φ, changing from a value close to a unit, at low φ, to a value around two at high φ. This change in the kinetic reaction order is associated to differences of particle adsorption mechanism on the surface. At low φ values, the monolayer formation is achieved by independent adsorption of single particles and the reaction order is close to 1. At high φ values, the simultaneous adsorption of two particles on the surface leads to an increase of the reaction order to values close to 2.
Asunto(s)
Coloides/química , Modelos Moleculares , Movimiento (Física) , Adsorción , Algoritmos , Cinética , Propiedades de SuperficieRESUMEN
The influence of the sticking probability P and the drift velocity on kinetics and structure formation arising in coupled aggregation and sedimentation processes was studied by means of simulations. For this purpose, a large prism with no periodical conditions for the sedimentation direction was considered allowing for sediment formation at the prism base. The time evolution of the cluster size distribution (CSD) and weight-average cluster size (n(w)) were determined in three different regions of the prism. The cluster morphology and the sediment structure were also analyzed. We found that the coupled aggregation and sedimentation processes in the bulk are governed by P for short times, and controlled by the Péclet number Pe for long times. In the lower part of the reaction volume, where the sediment grows, the local n(w) grows at sufficiently large times analytically with an exponent of four. This behavior seems to be independent of Pe and P. The obtained results are in good agreement with the experimental data reported by C. Allain, M. Cloitre, and M. Wafra [Phys. Rev. Lett. 74, 1478 (1995)] and support the idea of a possible internal cluster rearrangement for the experiments. Finally, we discuss how the scale dependent fractal character of the sediment is related to the different stages of the aggregation process.
RESUMEN
Reversible aggregation processes were simulated for systems of freely diffusing sticky particles. Reversibility was introduced by allowing that all bonds in the system may break with a given probability per time interval. In order to describe the kinetics of such aggregation-fragmentation processes, a fragmentation kernel was developed and then used together with the Brownian aggregation kernel for solving the corresponding kinetic master equation. The deduced fragmentation kernel considers a single characteristic lifetime for all bonds and accounts for the cluster morphology by averaging over all possible configurations for clusters of a given size. It became evident that the simulated cluster-size distributions could be described only when an additional fragmentation effectiveness was considered. Doing so, the stochastic solutions were in good agreement with the simulated data.