Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Acoust Soc Am ; 142(2): 890, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28863589

RESUMEN

The occurrence of a negative dynamic mass density is a striking property of metamaterials. It appears when an inner local resonance is present. Results coming from an asymptotic theory are recalled briefly, showing the scaling of physical properties leading to inner resonance in elastic composites containing homogeneous soft inclusions, with negligible scattering of waves traveling through the matrix. This appears for a large contrast of elastic properties between matrix and inclusion. The frequency-dependent dynamic mass density depends on the resonance frequencies of the inner inclusions and on their related participation factors. Having solved the dynamic elasticity problem, these physical quantities are provided in the case of homogeneous cylindrical and spherical inclusions. It is shown that numerous resonance frequencies do not contribute to the dynamic mass density or have small participation factors, which simplifies significantly the physics involved in the concerned inner resonance phenomena. Finally, non-dimensional resonance frequencies and participation factors are given for both cases of inclusions as functions of the Poisson's ratio, defining completely the dynamic mass density.

2.
J Acoust Soc Am ; 141(6): 4768, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28679240

RESUMEN

The main purpose of this article is to present, within a unified framework, a technique based on numerical homogenization, to model the acoustical properties of real fibrous media from their geometrical characteristics and to compare numerical results with experimental data. The authors introduce a reconstruction procedure for a random fibrous medium and use it as a basis for the computation of its geometrical, transport, and sound absorbing properties. The previously ad hoc "fiber anisotropies" and "volume weighted average radii," used to describe the experimental data on microstructure, are here measured using scanning electron microscopy. The authors show that these parameters, in conjunction with the bulk porosity, contribute to a precise description of the acoustical characteristics of fibrous absorbents. They also lead to an accurate prediction of transport parameters which can be used to predict acoustical properties. The computed values of the permeability and frequency-dependent sound absorption coefficient are successfully compared with permeability and impedance-tube measurements. The authors' results indicate the important effect of fiber orientation on flow properties associated with the different physical properties of fibrous materials. A direct link is provided between three-dimensional microstructure and the sound absorbing properties of non-woven fibrous materials, without the need for any empirical formulae or fitting parameters.

3.
J Chem Phys ; 146(1): 014707, 2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-28063437

RESUMEN

In this paper, we study the friction behavior of molecular liquids with anisotropically strained graphene. Due to the changes of lattice and the potential energy surface, the friction is orientation dependent and can be computed by tensorial Green-Kubo formula. Simple quantitative estimations are also proposed for the zero-time response and agree reasonably well with the molecular dynamics results. From simulations, we can obtain the information of structures, dynamics of the system, and study the influence of strain and molecular shapes on the anisotropy degree. It is found that unilateral strain can increase friction in all directions but the strain direction is privileged. Numerical evidences also show that nonspherical molecules are more sensitive to strain and give rise to more pronounced anisotropy effects.

4.
Phys Rev E ; 93(2): 022105, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26986286

RESUMEN

In this paper, we present an estimation of the conductivity of composites constituted of identical spheres embedded in a host material. A family of polarization integral equations for the localization problem is constructed and the operator is then minimized to yield an optimal integral equation. As a result, the corresponding Neumann series converges with the fastest rate and can be used to estimate the effective conductivity. By combining this series and integral approximation, one can derive explicit expressions for the overall property using expansions in Fourier domain. For random hard-sphere systems, relations to structure factors and triplet structure factors have been made and Kirkwood superposition approximation is used to evaluate the effective conductivity, taking into account third-order correlations. This presents an original means to account for the statistical information up to third-order correlation when determining the effective properties of composite materials.

5.
J Acoust Soc Am ; 137(6): 3263-71, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26093416

RESUMEN

One main feature of metamaterials is the occurrence of a negative dynamic mass density that is produced when an inner local resonance is present. The inner resonance can be obtained in composite materials containing composite inclusions. For suitable ratios of the physical properties of the constituting materials, the composite inclusions act as spring-mass systems. The scaling of physical properties leading to such an inner resonance and the associated effective dynamic properties of materials containing composite inclusions are briefly recalled. The resonance frequencies and dynamic mass densities are obtained in a closed form for materials containing cylindrical composite fibers or spherical composite inclusions, after solving the related boundary value elasticity problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA