Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuropharmacology ; : 110165, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39303855

RESUMEN

Sphingosine-1-phosphate (S1P) receptor (S1PR) agonists, such as fingolimod (FTY720), alleviate nociception in preclinical pain models by either activation (agonism) or inhibition (functional antagonism) of S1PR type-1 (S1PR1). However, the dose-dependence and temporal relationship between reversal of nociception and modulation of S1PR1 signaling has not been systematically investigated. This study examined the relationship between FTY720-induced antinociception and S1PR1 adaptation using a sciatic nerve chronic constriction injury (CCI) model of neuropathic pain in male and female C57Bl/6J mice. Daily injections of FTY720 for 14 days dose-dependently reversed CCI-induced mechanical allodynia without tolerance development, and concomitantly resulted in a dose-dependent reduction of G-protein activation by the S1PR1-selective agonist SEW2871 in the lumbar spinal cord and brain. These findings indicate FTY720-induced desensitization of S1PR1 signaling coincides with its anti-allodynic effects. Consistent with this finding, a single injection of FTY720 reversed mechanical allodynia while concomitantly producing partial desensitization of S1PR1-stimulated G-protein activation in the CNS. However, mechanical allodynia returned 24-hr post injection, despite S1PR1 desensitization at that time, demonstrating a dissociation between these measures. Furthermore, CCI surgery led to elevations of sphingolipid metabolites, including S1P, which were unaffected by daily FTY720 administration, suggesting FTY720 reversed mechanical allodynia by targeting S1PR1 rather than sphingolipid metabolism. Supporting this hypothesis, acute administration of the S1PR1-selective agonist CYM-5442 mimicked the anti-allodynic effect of FTY720. In contrast, the S1PR1-selective antagonist NIBR-0213 prevented the anti-allodynic effect of FTY720, but NIBR-0213 given alone did not affect nociception. These results indicate that FTY720 alleviates CCI-induced allodynia through a mechanism distinct from functional antagonism.

2.
J Neurosci ; 39(30): 5949-5965, 2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31127001

RESUMEN

Diacylglycerol lipase-α (DAGL-α), the principal biosynthetic enzyme of the endogenous cannabinoid 2-arachidonylglycerol (2-AG) on neurons, plays a key role in CB1 receptor-mediated synaptic plasticity and hippocampal neurogenesis, but its contribution to global hippocampal-mediated processes remains unknown. Thus, the present study examines the role that DAGL-α plays on LTP in hippocampus, as well as in hippocampal-dependent spatial learning and memory tasks, and on the production of endocannabinoid and related lipids through the use of complementary pharmacologic and genetic approaches to disrupt this enzyme in male mice. Here we show that DAGL-α gene deletion or pharmacological inhibition disrupts LTP in CA1 of the hippocampus but elicits varying magnitudes of behavioral learning and memory deficits in mice. In particular, DAGL-α-/- mice display profound impairments in the Object Location assay and Morris Water Maze (MWM) acquisition engaging in nonspatial search strategies. In contrast, WT mice administered the DAGL-α inhibitor DO34 show delays in MWM acquisition and reversal learning, but no deficits in expression, extinction, forgetting, or perseveration processes in this task, as well as no impairment in Object Location. The deficits in synaptic plasticity and MWM performance occur in concert with decreased 2-AG and its major lipid metabolite (arachidonic acid), but increases of a 2-AG diacylglycerol precursor in hippocampus, PFC, striatum, and cerebellum. These novel behavioral and electrophysiological results implicate a direct and perhaps selective role of DAGL-α in the integration of new spatial information.SIGNIFICANCE STATEMENT Here we show that genetic deletion or pharmacologic inhibition of diacylglycerol lipase-α (DAGL-α) impairs hippocampal CA1 LTP, differentially disrupts spatial learning and memory performance in Morris water maze (MWM) and Object Location tasks, and alters brain levels of endocannabinoids and related lipids. Whereas DAGL-α-/- mice exhibit profound phenotypic spatial memory deficits, a DAGL inhibitor selectively impairs the integration of new information in MWM acquisition and reversal tasks, but not memory processes of expression, extinction, forgetting, or perseveration, and does not affect performance in the Objection Location task. The findings that constitutive or short-term DAGL-α disruption impairs learning and memory at electrophysiological and selective in vivo levels implicate this enzyme as playing a key role in the integration of new spatial information.


Asunto(s)
Hipocampo/metabolismo , Lipoproteína Lipasa/metabolismo , Memoria , Aprendizaje Espacial , Animales , Ácido Araquidónico/metabolismo , Hipocampo/fisiología , Lipoproteína Lipasa/antagonistas & inhibidores , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA