Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proteomics ; : e2400044, 2024 Jun 02.
Artículo en Francés | MEDLINE | ID: mdl-38824664

RESUMEN

RNA-dependent liquid-liquid phase separation (LLPS) proteins play critical roles in cellular processes such as stress granule formation, DNA repair, RNA metabolism, germ cell development, and protein translation regulation. The abnormal behavior of these proteins is associated with various diseases, particularly neurodegenerative disorders like amyotrophic lateral sclerosis and frontotemporal dementia, making their identification crucial. However, conventional biochemistry-based methods for identifying these proteins are time-consuming and costly. Addressing this challenge, our study developed a robust computational model for their identification. We constructed a comprehensive dataset containing 137 RNA-dependent and 606 non-RNA-dependent LLPS protein sequences, which were then encoded using amino acid composition, composition of K-spaced amino acid pairs, Geary autocorrelation, and conjoined triad methods. Through a combination of correlation analysis, mutual information scoring, and incremental feature selection, we identified an optimal feature subset. This subset was used to train a random forest model, which achieved an accuracy of 90% when tested against an independent dataset. This study demonstrates the potential of computational methods as efficient alternatives for the identification of RNA-dependent LLPS proteins. To enhance the accessibility of the model, a user-centric web server has been established and can be accessed via the link: http://rpp.lin-group.cn.

2.
Curr Res Struct Biol ; 7: 100122, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38188542

RESUMEN

Over the years, extensive research has highlighted the functional roles of small nucleolar RNAs in various biological processes associated with the development of complex human diseases. Therefore, understanding the existing relationships between different snoRNAs and diseases is crucial for advancing disease diagnosis and treatment. However, classical biological experiments for identifying snoRNA-disease associations are expensive and time-consuming. Therefore, there is an urgent need for cost-effective computational techniques that can enhance the efficiency and accuracy of prediction. While several computational models have already been proposed, many suffer from limitations and suboptimal performance. In this study, we introduced a novel Graph Neural Network-based (GNN) classification model, called SAGESDA, which is implemented through the GraphSAGE architecture with attention for the prediction of snoRNA-disease associations. The classifier leverages local neighbouring nodes in a heterogeneous network to generate new node embeddings through message passing. The mini-batch gradient descent technique was applied to divide the graph into smaller sub-graphs, which enhances the model's accuracy, speed and scalability. With these advancements, SAGESDA attained an area under the receiver operating characteristic (ROC) curve (AUC) of 0.92 using the standard dot product classifier, surpassing previous related studies. This notable performance demonstrates that SAGESDA is a promising model for predicting unknown snoRNA-disease associations with high accuracy. The SAGESDA implementation details can be obtained from https://github.com/momanyibiffon/SAGESDA.git.

3.
Comput Biol Med ; 163: 107165, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37315383

RESUMEN

MicroRNAs have a significant role in the emergence of various human disorders. Consequently, it is essential to understand the existing interactions between miRNAs and diseases, as this will help scientists better study and comprehend the diseases' biological mechanisms. Findings can be employed as biomarkers or drug targets to advance the detection, diagnosis, and treatment of complex human disorders by foretelling possible disease-related miRNAs. This study proposed a computational model for predicting potential miRNA-disease associations called the Collaborative Filtering Neighborhood-based Classification Model (CFNCM), in light of the shortcomings of conventional and biological experiments, which are expensive and time-consuming. The model generated integrated miRNA and disease similarity matrices using the validated associations and miRNA and disease similarity information and used them as the input features for CFNCM. To produce class labels, we first determined the association scores for brand-new pairs using user-based collaborative filtering. With zero as the threshold, the associations with scores >0 were labelled 1, indicating a potential positive association, otherwise, it is marked as 0. Then, we developed classification models using various machine-learning algorithms. By comparison, we discovered that the support vector machine (SVM) produced the best AUC of 0.96 with 10-fold cross-validation through the GridSearchCV technique for identifying optimal parameter values. In addition, the models were evaluated and verified by analyzing the top 50 breast and lung neoplasms-related miRNAs, of which 46 and 47 associations were verified in two authoritative databases, dbDEMC and miR2Disease.


Asunto(s)
Enfermedad , MicroARNs , Máquina de Vectores de Soporte , Características del Vecindario , MicroARNs/genética , MicroARNs/metabolismo , Simulación por Computador , Humanos , Enfermedad/clasificación , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA