Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 474: 134746, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38850952

RESUMEN

Subsurface injection of colloidal activated carbon (CAC) is an in situ remediation strategy for perfluoroalkyl acids (PFAA), but the influence of groundwater solutes on longevity is uncertain, particularly for short-chain PFAA. We quantify the impact of inorganic anions, dissolved organic matter (DOM), and stabilizing polymer on PFAA adsorption to a commercial CAC. Surface characterization supported PFAA chain-length dependent adsorption results and mechanisms are provided. Inorganic anions decreased adsorption for short-chain PFAA (<7 perfluorinated carbons) due to competitive effects, while long-chain PFAA (≥ 7 perfluorinated carbons) were less impacted. DOM decreased adsorption of all PFAA in a chain-length dependent manner. High DOM concentrations (10 mg/L, ∼5 mg OC/L) decreased PFOA adsorption by a factor of 2, PFPeA by one order of magnitude, and completely hindered PFBA adsorption. High MW DOM has less impact on short-chain PFAA than low MW DOM, possibly due to differences in the ability to access CAC micropores. Low DOM concentrations (1 mg/L, ∼0.5 mg OC/L) did not impact adsorption. CMC (90 kDa average MW) had negligible impact on PFAA adsorption likely due to minimal CAC surface coverage. Longevity modeling demonstrated that groundwater solutes limit the capacity for PFAA in a CAC barrier, particularly for short-chain PFAA.

2.
Environ Pollut ; 250: 1019-1031, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31085468

RESUMEN

As the global population becomes more concentrated in urban areas, resource consumption, including access to pharmaceuticals, is increasing and chemical use is also increasingly concentrated. Unfortunately, implementation of waste management systems and wastewater treatment infrastructure is not yet meeting these global megatrends. Herein, pharmaceuticals are indicators of an urbanizing water cycle; antidepressants are among the most commonly studied classes of these contaminants of emerging concern. In the present study, we performed a unique global hazard assessment of selective serotonin reuptake inhibitors (SSRIs) in water matrices across geographic regions and for common wastewater treatment technologies. SSRIs in the environment have primarily been reported from Europe (50%) followed by North America (38%) and Asia-Pacific (10%). Minimal to no monitoring data exists for many developing regions of the world, including Africa and South America. From probabilistic environmental exposure distributions, 5th and 95th percentiles for all SSRIs across all geographic regions were 2.31 and 3022.1 ng/L for influent, 5.3 and 841.6 ng/L for effluent, 0.8 and 127.7 ng/L for freshwater, and 0.5 and 22.3 ng/L for coastal and marine systems, respectively. To estimate the potential hazards of SSRIs in the aquatic environment, percent exceedances of therapeutic hazard values of specific SSRIs, without recommended safety factors, were identified within and among geographic regions. For influent sewage and wastewater effluents, sertraline exceedances were observed 49% and 29% of the time, respectively, demonstrating the need to better understand emerging water quality hazards of SSRIs in urban freshwater and coastal ecosystems. This unique global review and analysis identified regions where more monitoring is necessary, and compounds requiring toxicological attention, particularly with increasing aquatic reports of behavioral perturbations elicited by SSRIs.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Agua Dulce/química , Inhibidores Selectivos de la Recaptación de Serotonina/análisis , Aguas del Alcantarillado/química , Contaminantes Químicos del Agua/análisis , África , Antidepresivos/análisis , Asia , Ecosistema , Europa (Continente) , América del Norte , América del Sur , Urbanización , Ciclo Hidrológico , Purificación del Agua/métodos , Calidad del Agua
3.
Chemosphere ; 226: 565-575, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953901

RESUMEN

Transformation of endocrine active compounds (EACs) by either chlorination (Cl-D) or UV disinfection (UV-D) was studied by field sampling and bench-scale validation studies. Field testing assessed concentration of 13 EACs in effluent at two Chicago area 250 MGD wastewater reclamation plants (WRP) over two years. One WRP uses chlorination/dechlorination while the other employs UV disinfection. Target compounds included bupropion, carbamazepine, citalopram, duloxetine, estradiol, estrone, fluoxetine, nonylphenol, norfluoxetine, norsertraline, paroxetine, sertraline, and venlafaxine. Concentrations of 9/13 target compounds were partially reduced after disinfection (5-65% reduction). None of the target compounds were fully transformed by either chlorination or UV treatment at the WRP scale. In bench-scale experiments each compound was spiked into deionized water or effluent and treated in a process mimicking plant-scale disinfection to validate transformations. Correlation was observed between compounds that were transformed in bench-testing and those that decreased in concentration in post-disinfection WRP effluent (10/13 compounds). A survey of potential reaction products was made. Chlorination of some amine containing compounds produced chloramine by-products that reverted to the initial form after dechlorination. Transformation products produced upon simulated UV disinfection were more diverse. Laboratory UV-induced transformation was generally more effective under stirred conditions, suggesting that indirect photo-induced reactions may predominate over direct photolysis.


Asunto(s)
Cloro/química , Desinfección/métodos , Disruptores Endocrinos/análisis , Fotólisis , Aguas Residuales/análisis , Purificación del Agua/métodos , Chicago , Cloraminas , Disruptores Endocrinos/química , Halogenación , Rayos Ultravioleta
4.
Environ Sci Technol ; 53(10): 6035-6043, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31034220

RESUMEN

Pharmaceutical contamination is an increasing problem globally. In this regard, the selective serotonin reuptake inhibitors (SSRIs)-a group of antidepressants-are particularly concerning. By disrupting the serotonergic system, SSRIs have the potential to affect ecologically important behaviors in exposed wildlife. Despite this, the nature and magnitude of behavioral perturbations resulting from environmentally relevant SSRI exposure among species is poorly understood. Accordingly, we investigated the effects of two field-realistic levels of the SSRI fluoxetine (61 and 352 ng/L) on sociability and anxiety-related behaviors in eastern mosquitofish ( Gambusia holbrooki) for 28 days. Additionally, we measured whole-body tissue concentrations of fluoxetine and norfluoxetine. We found that fluoxetine altered anxiety-related behavior but not sociability. Specifically, female fish showed reduced anxiety-related behavior at the lower treatment level, while males showed an increase at the higher treatment level. In addition, we report a biomass-dependent and sex-specific accumulation of fluoxetine and norfluoxetine, with smaller fish showing higher relative tissue concentrations, with this relationship being more pronounced in males. Our study provides evidence for nonmonotonic and sex-specific effects of fluoxetine exposure at field-realistic concentrations. More broadly, our study demonstrated that neuroactive pharmaceuticals, such as fluoxetine, can affect aquatic life by causing subtle but important shifts in ecologically relevant behaviors.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Antidepresivos , Ansiedad , Conducta Animal , Femenino , Fluoxetina , Masculino , Inhibidores Selectivos de la Recaptación de Serotonina
5.
J Vis Exp ; (137)2018 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-30102268

RESUMEN

Fish models and behaviors are increasingly used in the biomedical sciences; however, fish have long been the subject of ecological, physiological and toxicological studies. Using automated digital tracking platforms, recent efforts in neuropharmacology are leveraging larval fish locomotor behaviors to identify potential therapeutic targets for novel small molecules. Similar to these efforts, research in the environmental sciences and comparative pharmacology and toxicology is examining various behaviors of fish models as diagnostic tools in tiered evaluation of contaminants and real-time monitoring of surface waters for contaminant threats. Whereas the zebrafish is a popular larval fish model in the biomedical sciences, the fathead minnow is a common larval fish model in ecotoxicology. Unfortunately, fathead minnow larvae have received considerably less attention in behavioral studies. Here, we develop and demonstrate a behavioral profile protocol using caffeine as a model neurostimulant. Though photomotor responses of fathead minnows were occasionally affected by caffeine, zebrafish were markedly more sensitive for photomotor and locomotor endpoints, which responded at environmentally relevant levels. Future studies are needed to understand comparative behavioral sensitivity differences among fish with age and time of day, and to determine whether similar behavioral effects would occur in nature and be indicative of adverse outcomes at the individual or population levels of biological organization.


Asunto(s)
Conducta Animal/fisiología , Cafeína/química , Larva/fisiología , Contaminantes Químicos del Agua/química , Animales , Peces , Modelos Animales , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA