Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Stem Cells Int ; 2016: 9695827, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26697082

RESUMEN

Postnatal neural progenitor cells of the enteric nervous system are a potential source for future cell replacement therapies of developmental dysplasia like Hirschsprung's disease. However, little is known about the molecular mechanisms driving the homeostasis and differentiation of this cell pool. In this work, we conducted Affymetrix GeneChip experiments to identify differences in gene regulation between proliferation and early differentiation of enteric neural progenitors from neonatal mice. We detected a total of 1333 regulated genes that were linked to different groups of cellular mechanisms involved in cell cycle, apoptosis, neural proliferation, and differentiation. As expected, we found an augmented inhibition in the gene expression of cell cycle progression as well as an enhanced mRNA expression of neuronal and glial differentiation markers. We further found a marked inactivation of the canonical Wnt pathway after the induction of cellular differentiation. Taken together, these data demonstrate the various molecular mechanisms taking place during the proliferation and early differentiation of enteric neural progenitor cells.

2.
PLoS One ; 9(5): e97792, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24871092

RESUMEN

Neural stem or progenitor cells have been proposed to restore gastrointestinal function in patients suffering from congenital or acquired defects of the enteric nervous system. Various, mainly embryonic cell sources have been identified for this purpose. However, immunological and ethical issues make a postnatal cell based therapy desirable. We therefore evaluated and quantified the potential of progenitor cells of the postnatal murine enteric nervous system to give rise to neurons and glial cells in vitro. Electrophysiological analysis and BrdU uptake studies provided direct evidence that generated neurons derive from expanded cells in vitro. Transplantation of isolated and expanded postnatal progenitor cells into the distal colon of adult mice demonstrated cell survival for 12 weeks (end of study). Implanted cells migrated within the gut wall and differentiated into neurons and glial cells, both of which were shown to derive from proliferated cells by BrdU uptake. This study indicates that progenitor cells isolated from the postnatal enteric nervous system might have the potential to serve as a source for a cell based therapy for neurogastrointestinal motility disorders. However, further studies are necessary to provide evidence that the generated cells are capable to positively influence the motility of the diseased gastrointestinal tract.


Asunto(s)
Sistema Nervioso Entérico/citología , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Neuronas/citología , Animales , Bromodesoxiuridina , Proliferación Celular , Separación Celular/métodos , Colon/metabolismo , Motilidad Gastrointestinal/fisiología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Ratones
3.
Stem Cell Res ; 11(3): 1191-205, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24013065

RESUMEN

INTRODUCTION: Thyroid hormones play important roles in the development of neural cells in the central nervous system. Even minor changes to normal thyroid hormone levels affect dendritic and axonal outgrowth, sprouting and myelination and might even lead to irreversible damages such as cretinism. Despite our knowledge of the influence on the mammalian CNS, the role of thyroid hormones in the development of the enteric nervous system (ENS) still needs to be elucidated. In this study we have analyzed for the first time the influence of 3,5,3'-triiodothyronine (T3) on ENS progenitor cells using cell biological assays and a microarray technique. RESULTS: In our in vitro model, T3 inhibited cell proliferation and stimulated neurite outgrowth of differentiating ENS progenitor cells. Microarray analysis revealed a group of 338 genes that were regulated by T3 in differentiating enterospheres. 67 of these genes are involved in function and development of the nervous system. 14 of them belong to genes that are involved in axonal guidance or neurite outgrowth. Interestingly, T3 regulated the expression of netrin G1 and endothelin 3, two guidance molecules that are involved in human enteric dysganglionoses. CONCLUSION: The results of our study give first insights how T3 may affect the enteric nervous system. T3 is involved in proliferation and differentiation processes in enterospheres. Microarray analysis revealed several interesting gene candidates that might be involved in the observed effects on enterosphere differentiation. Future studies need to be conducted to better understand the gene to gene interactions.


Asunto(s)
Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/efectos de los fármacos , Células Madre/efectos de los fármacos , Triyodotironina/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Endotelina-3/genética , Endotelina-3/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Netrinas , Análisis de Secuencia por Matrices de Oligonucleótidos , Células Madre/citología , Células Madre/metabolismo , Receptores alfa de Hormona Tiroidea/genética , Receptores alfa de Hormona Tiroidea/metabolismo , Receptores beta de Hormona Tiroidea/genética , Receptores beta de Hormona Tiroidea/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA