Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Ayurveda Integr Med ; 15(1): 100850, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38219436

RESUMEN

BACKGROUND: Oxidized LDL (OxLDL), the key player in atherogenesis modulates endothelial dysfunction, initiates monocyte recruitment, accentuates foam cell formation, and flares up inflammatory and apoptotic events. Even though homeopathic preparation of Allium sativum has been proved to be an anti-inflammatory, anti-apoptotic and anti-atherogenic agent, its mechanism of action on abrogating OxLDL mediated foam cell formation is yet to be explored. OBJECTIVE: This study was designed to bring out the role of homeopathic preparation of Allium sativum in curbing OxLDL mediated cellular inflammation in IC-21 cells exposed with OxLDL. MATERIALS AND METHODS: OxLDL was used to induce oxidative damage in the IC-21 macrophage cells. Assessment of inflammatory cytokines, localization of NFκB, detection of apoptosis and the in silico analysis were performed in this study. RESULTS: The current study portrays the efficacy of homeopathy medicine as an anti-inflammatory agent, in reducing the levels of inflammatory cytokines and its mRNA expression, suppressing the activity of NFκB and preventing apoptosis in OxLDL treated IC-21 cells. CONCLUSION: To conclude, homeopathic preparation of Allium sativum 6C and 30C potencies are capable of controlling the transcriptional activity of NFκB and apoptosis in IC-21 cells exposed to OxLDL. These results implicate that Allium sativum homeopathic drug can be used as anti-inflammatory agent in reducing atherogenic events as it is capable of preventing OxLDL-mediated injury to macrophages.

2.
J Biochem Mol Toxicol ; 36(7): e23050, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35343011

RESUMEN

Type 1 diabetes is a chronic immune-mediated disease caused by pancreatic ß-cell dysfunction with consequent severe insulin deficiency. Exacerbated blood glucose levels can cause oxidative stress in the pancreatic ß-cells, which leads to inflammation, and apoptosis resulting in islet dysfunction. Although massive studies have been carried out to elucidate the causative factors for ß-cell damage in diabetes, the therapeutic approach to pancreatic ß-cell damage has not been extensively studied. Hence, the present study has been designed to delineate the role of gymnemic acid (GA) in protecting pancreatic ß-cells in diabetic animals, with special reference to inflammation and apoptosis. Our data revealed that the treatment with GA significantly reverted the alteration in both biochemical and histochemical observations in young diabetic rats. Moreover, treatment with the GA downregulates the expression of proinflammatory markers (nuclear factor-κB, tumor necrosis factor-α, interleukin-[IL]-6, and IL-1ß), proapoptotic proteins (Bax, cytochrome c, and cleaved caspase-3), as well as upregulates the expression of antiapoptotic protein Bcl-2 in diabetic rats. These findings suggest that the anti-inflammatory and antiapoptotic nature of GA mitigates ß-cell damage in hyperglycemic rats.


Asunto(s)
Apoptosis , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Triterpenos , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Glucemia , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inflamación , Estrés Oxidativo , Ratas , Saponinas/farmacología , Triterpenos/farmacología
3.
Tissue Eng Regen Med ; 19(3): 603-616, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35212973

RESUMEN

BACKGROUND: Endogenous pancreatic ß-cell regeneration is a promising therapeutic approach for enhancing ß-cell function and neogenesis in diabetes. Various findings have reported that regeneration might occur via stimulating ß-cell proliferation, neogenesis, or conversion from other pancreatic cells to ß-like cells. Although the current scenario illustrates numerous therapeutic strategies and approaches that concern endogenous ß-cell regeneration, all of them have not been successful to a greater extent because of cost effectiveness, availability of suitable donors and rejection in case of transplantation, or lack of scientific evidence for many phytochemicals derived from plants that have been employed in traditional medicine. Therefore, the present study aims to investigate the effect of gymnemic acid (GA) on ß-cell regeneration in streptozotocin-induced type 1 diabetic rats and high glucose exposed RIN5-F cells. METHODS: The study involves histopathological and immunohistochemical analysis to examine the islet's architecture. Quantitative polymerase chain reaction (qPCR) and/or immunoblot were employed to quantify the ß-cell regeneration markers and cell cycle proliferative markers. RESULTS: The immunoexpression of E-cadherin, ß-catenin, and phosphoinositide 3-kinases/protein kinase B were significantly increased in GA-treated diabetic rats. On the other hand, treatment with GA upregulated the pancreatic regenerative transcription factor viz. pancreatic duodenal homeobox 1, Neurogenin 3, MafA, NeuroD1, and ß-cells proliferative markers such as CDK4, and Cyclin D1, with a simultaneous downregulation of the forkhead box O, glycogen synthase kinase-3, and p21cip1 in diabetic treated rats. Adding to this, we noticed increased nuclear localization of Pdx1 in GA treated high glucose exposed RIN5-F cells. CONCLUSION: Our results suggested that GA acts as a potential therapeutic candidate for endogenous ß-cell regeneration in treating type 1 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Animales , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Glucosa/metabolismo , Células Secretoras de Insulina/metabolismo , Ratas , Regeneración , Saponinas , Triterpenos
4.
Oxid Med Cell Longev ; 2020: 9568278, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32952852

RESUMEN

Cardiac hypertrophy is the underlying cause of heart failure and is characterized by excessive oxidative stress leading to collagen deposition. Therefore, understanding the signalling mechanisms involved in excessive extracellular matrix deposition is necessary to prevent cardiac remodelling and heart failure. In this study, we hypothesized that hesperetin, a flavanone that elicits the activation of Nrf2 signalling and thereby suppresses oxidative stress, mediated pathological cardiac hypertrophy progression. A cardiac hypertrophy model was established with subcutaneous injection of isoproterenol in male Wistar rats. Oxidative stress markers, antioxidant defense status, and its upstream signalling molecules were evaluated to discover the impacts of hesperetin in ameliorating cardiac hypertrophy. Our results implicate that hesperetin pretreatment resulted in the mitigation of oxidative stress by upregulating antioxidant capacity of the heart. This curative effect might be owing to the activation of the master regulator of antioxidant defense system, known as Nrf2. Further, analysis of Nrf2 revealed that hesperetin enhances its nuclear translocation as well as the expression of its downstream targets (GCLC, NQO1, and HO-1) to boost the antioxidative status of the cells. To support this notion, in vitro studies were carried out in isoproterenol-treated H9c2 cells. Immunocytochemical analysis showed augmented nuclear localization of Nrf2 implicating the action of hesperetin at the molecular level to maintain the cellular redox homeostasis. Thus, it is conceivable that hesperetin could be a potential therapeutic candidate that enhances Nrf2 signalling and thereby ameliorates pathological cardiac remodelling.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Hesperidina/uso terapéutico , Homeostasis , Factor 2 Relacionado con NF-E2/metabolismo , Transducción de Señal , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Biomarcadores/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/patología , Línea Celular , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citoprotección/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Hesperidina/farmacología , Homeostasis/efectos de los fármacos , Isoproterenol , Masculino , Factor 2 Relacionado con NF-E2/genética , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Superóxidos/metabolismo
5.
Free Radic Biol Med ; 160: 227-238, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-32768570

RESUMEN

Diabetic nephropathy (DN), a progressive kidney disease afflicts more than 20 and up to 40% of the diabetic population and it is characterized by persistent microalbuminuria declined glomerular filtration rate. The interesting feature associated with DN is that, even though the progression of the disease correlates with oxidative stress, Nrf2, the master regulator of antioxidant defense system involved in counteracting oxidative stress is also upregulated in the diabetic kidneys of both human as well as experimental animals in early stages of DN. Despite the increased expression, the ability of this protein to get translocated into the nucleus is diminished signifying the functional impairment of Nrf2, implying redox imbalance. Hence, it is understood that agents that boost the translocation of Nrf2 might be beneficial rather than those that quantitatively overexpress Nrf2 in treating DN. The deleterious effects of synthetic Nrf2 activators have instigated the researchers to search for phytochemicals that have ambient Nrf2 boosting ability with no side effects, one such phytochemical is Epigallocatechin-3-gallate (EGCG) and it has shown beneficial effects by preventing the progression of DN via influencing Nrf2/ARE pathway, however, the modus operandi is unclear, despite speculations. This study was designed to find out whether supplementation of Nrf2 booster like EGCG at the crucial time of Nrf2 dysfunction can mitigate the progression of DN. Based on the findings of the present study, it might be concluded that the beneficial effect of EGCG in mitigating DN is mediated mainly through its ability to activate the Nrf2/ARE signaling pathway at multiple stages i.e., by downregulating Keap1 and boosting the nuclear Nrf2 level by disrupting Nrf2-Keap1 interaction. These results emphasize that supplementation of EGCG might be more beneficial at an early stage of DN, where dysfunctional Nrf2 accumulation occurs, which should be further validated.


Asunto(s)
Catequina/análogos & derivados , Diabetes Mellitus , Nefropatías Diabéticas , Animales , Catequina/farmacología , Catequina/uso terapéutico , Nefropatías Diabéticas/tratamiento farmacológico , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
6.
Oxid Med Cell Longev ; 2019: 2761041, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191797

RESUMEN

Given the role of oxidative stress in PD pathogenesis and off-target side effects of currently available drugs, several natural phytochemicals seem to be promising in the management of PD. Here, we tested the hypothesis that scopoletin, an active principle obtained from Morinda citrifolia (MC), efficiently quenches oxidative stress through DJ-1/Nrf2 signaling and ameliorates rotenone-induced PD. Despite reducing oxidative stress, the administration of MC extract (MCE) has lessened protein aggregation as evident from decreased levels of nitrotyrosine and α-synuclein. In vitro studies revealed that scopoletin lessened rotenone-induced apoptosis in SH-SY5Y cells through preventing oxidative injury. Particularly, scopoletin markedly upregulated DJ-1, which then promoted the nuclear translocation of Nrf2 and transactivation of antioxidant genes. Furthermore, we found that scopoletin prevents the nuclear exportation of Nrf2 by reducing the levels of Keap1 and thereby enhancing the neuronal defense system. Overall, our findings suggest that scopoletin acts through DJ-1-mediated Nrf2 signaling to protect the brain from rotenone-induced oxidative stress and PD. Thus, we postulate that scopoletin could be a potential drug to treat PD.


Asunto(s)
Apoptosis/efectos de los fármacos , Morinda/química , Factor 2 Relacionado con NF-E2/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Escopoletina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Elementos de Respuesta Antioxidante/fisiología , Western Blotting , Citometría de Flujo , Masculino , Estrés Oxidativo/efectos de los fármacos , Agregado de Proteínas , Ratas
7.
J Agric Food Chem ; 65(36): 8028-8036, 2017 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-28823168

RESUMEN

Apoptosis is an active response of cells to altered microenvironments, which is characterized by cell shrinkage, chromatin condensation, and DNA fragmentation, in a variety of cell types such as renal epithelial cells, endothelial cells, mesangial cells, and podocytes. Hyperglycemia is among the microenvironmental factors that may facilitate apoptosis, which plays a decisive role in the initiation of diabetic nephropathy. Transforming growth factor-ß emerges as a powerful fibrogenic factor in the development of renal hypertrophy. Although, a number of potential treatment strategies exist for diabetic nephropathy, considering the ease of use and bioavailability, phytochemicals stands distinct as the preeminent option. EGCG, a green tea catechin is one such phytochemical which possesses hypoglycemic and antifibrotic activity. The present study aims to explore the potential of EGCG to prevent apoptosis in a high-fat diet and STZ induced diabetic nephropathy rats by assessing renal function, pro-fibrotic marker, and the expression of apoptotic and antiapoptotic proteins. Our results validate EGCG as a potential antiapoptotic agent evidently by improving renal function via down regulating TGF-ß, consequently ameliorating diabetic nephropathy. In accordance with this, EGCG might be regarded as a prospective therapeutic candidate in modulating diabetic nephropathy, thus being a promising treatment.


Asunto(s)
Apoptosis/efectos de los fármacos , Catequina/análogos & derivados , Nefropatías Diabéticas/tratamiento farmacológico , Animales , Catequina/administración & dosificación , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Fibrosis , Humanos , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Estudios Prospectivos , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA