Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nutr Res ; 102: 23-34, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35366456

RESUMEN

Peppers are a rich source of bioactive compounds with several health benefits. However, most of the knowledge about these benefits has been obtained through in vitro studies, and less is known about their in vivo health-promoting and stress resistance effects. Therefore, we hypothesized that the intake of apigenin glycosides (XAp-G) from Xiaomila green pepper (Capsicum frutescens) could protect against stress factors and promote longevity of Caenorhabditis elegans. Synchronized worms were treated with XAp-G and the lifespan and stress resistance were examined. XAp-G treatment strongly enhanced the average lifespan of worms by 23.9% compared with control by reducing the reactive oxygen species (ROS) level. Ultrahigh performance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectometry analysis showed that Xiaomila pepper (polyamide fraction) contained significant amount of flavone glycosides with m/z 563.14 (apigenin glycosides). Green fluorescent protein fluorescence and real-time polymerase chain reaction analyses showed that XAp-G-treatment could regulate the expression of anti-aging related genes, including daf-2, daf-16, sod-3, hsp-16.2, skn-1, gst-4, gcs-1, jnk-1, and sir-2.1 in C elegans, thereby promoting the translocation of DAF-16 and SKN-1 into the nucleus. However, it could not extend the lifespan of daf-16, skn-1, and sir-2.1 knocked-down mutants. XAp-G treatment significantly reduced ROS under normal and stress conditions (juglone, hydrogen peroxide), and thereby promotes longevity of C elegans via the insulin/insulin-like growth factor-1 signaling pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans , Capsicum , Animales , Apigenina/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Glicósidos/farmacología , Longevidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
2.
Meat Sci ; 175: 108453, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33548840

RESUMEN

The objective of this study was to investigate the effects of repeated freeze-thaw cycles on microorganisms, amino acid composition profile, chemical composition, mineral concentrations, water mobility, and fat of beef and chicken meats. Pure cultures of specific fungi and bacteria were separately injected into the minced meat. Apart from Pseudomonas, the total count of microorganisms significantly increased (P < 0.05) during refreezing treatment with the increase of storage period in both beef and chicken meats. During freezing treatment, the total count of Staphylococcus aureus, spore forming bacteria, and lactic acid bacteria were meat-type dependent. In conclusion, freeze-thaw cycles increased the microbial counts and decreased the water holding capacity, amino acids, and mineral concentrations of beef and chicken meats.


Asunto(s)
Almacenamiento de Alimentos/métodos , Congelación , Productos de la Carne/análisis , Productos de la Carne/microbiología , Tejido Adiposo , Aminoácidos/análisis , Animales , Bacterias/crecimiento & desarrollo , Bovinos , Pollos , Microbiología de Alimentos , Calidad de los Alimentos , Alimentos Congelados/análisis , Alimentos Congelados/microbiología , Hongos/crecimiento & desarrollo , Agua/química
3.
J Food Biochem ; : e13432, 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32783247

RESUMEN

Coronavirus epidemic 2019 (COVID-19), instigated by SARS-CoV-2 virus, is recently raising worldwide and inspiring global health worries. The main 3-chymotrypsin-like cysteine protease (3CLPro ) enzyme of SARS-CoV-2, which operates its replication, could be used as a medication discovery point. We therefore theoretically studied and docked the effects of 19 hydrolysable tannins on SARS-CoV-2 by assembling with the catalytic dyad residues of its 3CLpro using molecular operating environment (MOE 09). Results discovered that pedunculagin, tercatain, and castalin intensely interacted with the receptor binding site and catalytic dyad (Cys145 and His41) of SARS-CoV-2. Our analyses estimated that the top three hits might serve as potential inhibitor of SARS-CoV-2 leading molecules for additional optimization and drug development process to combat COVID-19. This study unleashed that tannins with specific structure could be utilized as natural inhibitors against COVID-19. PRACTICAL APPLICATIONS: The 3CLPro controls SARS-CoV-2 copying and manages its life series, which was targeted in case of SARS-CoV and MERS-CoV coronavirus. About 19 hydrolysable tannins were computed against 3CLpro of SARS-CoV-2. Pedunculagin, tercatain, and castalin interacted with Cys145 and His41 of SARS-CoV-2-3CLpro . Pedunculagin-SARS-CoV-2-3CLpro remain stable, with no obvious fluctuations. We predicted that the understandings gained in the current research may evidence valued for discovering and unindustrialized innovative natural inhibitors for COVID-19 in the nearby future.

4.
Sci Rep ; 10(1): 13527, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782276

RESUMEN

A novel bacterial strain of acetic acid bacteria capable of producing riboflavin was isolated from the soil sample collected in Wuhan, China. The isolated strain was identified as Gluconobacter oxydans FBFS97 based on several phenotype characteristics, biochemicals tests, and 16S rRNA gene sequence conducted. Furthermore, the complete genome sequencing of the isolated strain has showed that it contains a complete operon for the biosynthesis of riboflavin. In order to obtain the maximum concentration of riboflavin production, Gluconobacter oxydans FBFS97 was optimized in shake flask cultures through response surface methodology employing Plackett-Burman design (PBD), and Central composite design (CCD). The results of the pre-experiments displayed that fructose and tryptone were found to be the most suitable sources of carbon and nitrogen for riboflavin production. Then, PBD was conducted for initial screening of eleven minerals (FeSO4, FeCl3, KH2PO4, K2HPO4, MgSO4, ZnSO4, NaCl, CaCl2, KCl, ZnCl2, and AlCl3.6H2O) for their significances on riboflavin production by Gluconobacter oxydans strain FBFS97. The most significant variables affecting on riboflavin production are K2HPO4 and CaCl2, the interaction affects and levels of these variables were optimized by CCD. After optimization of the medium compositions for riboflavin production were determined as follows: fructose 25 g/L, tryptone 12.5 g/L, K2HPO4 9 g/L, and CaCl2 0.06 g/L with maximum riboflavin production 23.24 mg/L.


Asunto(s)
Ácido Acético/metabolismo , Gluconobacter oxydans/metabolismo , Modelos Estadísticos , Filogenia , ARN Bacteriano/análisis , Riboflavina/metabolismo , Medios de Cultivo , Genoma Bacteriano , Gluconobacter oxydans/genética , Gluconobacter oxydans/aislamiento & purificación , ARN Bacteriano/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
5.
Int J Food Microbiol ; 331: 108731, 2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-32535525

RESUMEN

This study aims to enhance the color and microbiological qualities of a raw beef using natural ingredients. Nitroso-hemoglobin (NO-Hb) integrated with vitamin C (VC), calcium lactate, and ginger complexation were used as natural inhibitors against the growth of aerobic and pathogenic bacteria, namely (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Salmonella. NO-Hb inhibited E. coli, S. aureus, and Salmonella, and enhanced the color stability more than nitrite in the minced beef model. After the multiexponential analysis of relaxation decays, the water component (T2b) was analyzed using the low-field NMR. The results indicated that, at the 7th d of cold-storage the third component (T2) was detected. Significant correlations were observed between T21 and T22 relaxation times and water-holding capacity in minced beef, implying that the LF-NMR measurements could be an efficient method for the determination and prediction of beef freshness. NO-Hb- ginger mixture, as a novel ingredient, could be used instead of nitrite in terms of meat safety.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Microbiología de Alimentos/métodos , Carne Roja/microbiología , Animales , Bovinos , Color , Zingiber officinale/química , Hemoglobinas/farmacología , Compuestos Nitrosos/farmacología , Extractos Vegetales/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA