Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomater Adv ; 161: 213885, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38743993

RESUMEN

Essential organs, such as the heart and liver, contain a unique porous network that allows oxygen and nutrients to be exchanged, with distinct random to ordered regions displaying varying degrees of strength. A novel technique, referred to here as flow-induced lithography, was developed. This technique generates tunable anisotropic three-dimensional (3D) structures. The ink for this bioprinting technique was made of titanium dioxide nanorods (Ti) and kaolinite nanoclay (KLT) dispersed in a GelMA/PEGDA polymeric suspension. By controlling the flow rate, aligned particle microstructures were achieved in the suspensions. The application of UV light to trigger the polymerization of the photoactive prepolymer freezes the oriented particles in the polymer network. Because the viability test was successful in shearing suspensions containing cells, the flow-induced lithography technique can be used with both acellular scaffolds and cell-laden structures. Fabricated hydrogels show outstanding mechanical properties resembling human tissues, as well as significant cell viability (> 95 %) over one week. As a result of this technique and the introduction of bio-ink, a novel approach has been pioneered for developing anisotropic tissue implants utilizing low-viscosity biomaterials.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Estereolitografía , Andamios del Tejido , Hidrogeles/química , Andamios del Tejido/química , Anisotropía , Humanos , Titanio/química , Ingeniería de Tejidos/métodos , Supervivencia Celular , Bioimpresión/métodos
2.
J Mech Behav Biomed Mater ; 150: 106285, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38088008

RESUMEN

Multifunctional bio-adhesives with tunable mechanical properties are obtained by controlling the orientation of anisotropic particles in a blend of fast-curing hydrogel with an imposed capillary flow. The suspensions' microstructural evolution was monitored by the small-angle light scattering (SALS) method during flow up to the critical Péclet number (Pe≈1) necessary for particle orientation and hydrogel crosslinking. The multifunctional bio-adhesives were obtained by combining flow and UV light exposure for rapid photo-curing of PEGDA medium and freezing titania rods' ordered microstructures. Blending the low- and high-molecular weight of PEGDA polymer improved the mechanical properties of the final hydrogel. All the hydrogel samples were non-cytotoxic up to 72 h after cell culturing. The system shows rapid blood hemostasis and promotes adhesive and cohesive strength matching targeted tissue properties with an applicating methodology compatible with surgical conditions. The developed SALS approach to optimize nanoparticles' microstructures in bio-adhesive applies to virtually any optically transparent nanocomposite and any type of anisotropic nanoparticles. As such, this method enables rational design of bio-adhesives with enhanced anisotropic mechanical properties which can be tailored to potentially any type of tissue.


Asunto(s)
Nanocompuestos , Adhesivos Tisulares , Adhesivos/química , Materiales Biocompatibles/farmacología , Hidrogeles/química , Nanocompuestos/química , Suturas , Adhesivos Tisulares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA