Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38544101

RESUMEN

Recently, the integration of unmanned aerial vehicles (UAVs) with edge computing has emerged as a promising paradigm for providing computational support for Internet of Things (IoT) applications in remote, disaster-stricken, and maritime areas. In UAV-aided edge computing, the offloading decision plays a central role in optimizing the overall system performance. However, the trajectory directly affects the offloading decision. In general, IoT devices use ground offload computation-intensive tasks on UAV-aided edge servers. The UAVs plan their trajectories based on the task generation rate. Therefore, researchers are attempting to optimize the offloading decision along with the trajectory, and numerous studies are ongoing to determine the impact of the trajectory on offloading decisions. In this survey, we review existing trajectory-aware offloading decision techniques by focusing on design concepts, operational features, and outstanding characteristics. Moreover, they are compared in terms of design principles and operational characteristics. Open issues and research challenges are discussed, along with future directions.

2.
Sensors (Basel) ; 23(6)2023 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-36991762

RESUMEN

Advancements in electronics and software have enabled the rapid development of unmanned aerial vehicles (UAVs) and UAV-assisted applications. Although the mobility of UAVs allows for flexible deployment of networks, it introduces challenges regarding throughput, delay, cost, and energy. Therefore, path planning is an important aspect of UAV communications. Bio-inspired algorithms rely on the inspiration and principles of the biological evolution of nature to achieve robust survival techniques. However, the issues have many nonlinear constraints, which pose a number of problems such as time restrictions and high dimensionality. Recent trends tend to employ bio-inspired optimization algorithms, which are a potential method for handling difficult optimization problems, to address the issues associated with standard optimization algorithms. Focusing on these points, we investigate various bio-inspired algorithms for UAV path planning over the past decade. To the best of our knowledge, no survey on existing bio-inspired algorithms for UAV path planning has been reported in the literature. In this study, we investigate the prevailing bio-inspired algorithms extensively from the perspective of key features, working principles, advantages, and limitations. Subsequently, path planning algorithms are compared with each other in terms of their major features, characteristics, and performance factors. Furthermore, the challenges and future research trends in UAV path planning are summarized and discussed.

3.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36772502

RESUMEN

Recently, owing to the high mobility and low cost of drones, drone-based delivery systems have shown considerable potential for ensuring flexible and reliable parcel delivery. Several crucial design issues must be considered to design such systems, including route planning, payload weight consideration, distance measurement, and customer location. In this paper, we present a survey of emerging drone routing algorithms for drone-based delivery systems, emphasizing three major drone routing aspects: trajectory planning, charging, and security. We focus on practical design considerations to ensure efficient, flexible, and reliable parcel delivery. We first discuss the potential issues arising when designing such systems. Next, we present a novel taxonomy based on the above-mentioned three aspects. We extensively review each algorithm for drone routing in terms of key features and operational characteristics. Furthermore, we compare the algorithms in terms of their main idea, advantages, limitations, and performance aspects. Finally, we present open research challenges to motivate further research in this field. In particular, we focus on the major aspects that researchers and engineers need to consider in order to design effective and reliable drone routing algorithms for drone-based delivery systems.

4.
Sensors (Basel) ; 22(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35458935

RESUMEN

With the emergence of the Internet of Things (IoT), billions of wireless devices, including sensors and wearable devices, are evolving under the IoT technology. The limited battery life of the sensor nodes remains a crucial implementation challenge to enable such a revolution, primarily because traditional battery replacement requires enormous human effort. Wirelessly powered sensor networks (WPSNs), which would eliminate the need for regular battery replacement and improve the overall lifetime of sensor nodes, are the most promising solution to efficiently address the limited battery life of the sensor nodes. In this study, an in-depth survey is conducted on the wireless power transfer (WPT) techniques through which sensor devices can harvest energy to avoid frequent node failures. Following a general overview of WPSNs, three wireless power transfer models are demonstrated, and their respective enabling techniques are discussed in light of the existing literature. Moreover, the existing WPT techniques are comprehensively reviewed in terms of critical design parameters and performance factors. Subsequently, crucial key performance-enhancing techniques for WPT in WPSNs are discussed. Finally, several challenges and future directions are presented for motivating further research on WPSNs.


Asunto(s)
Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Suministros de Energía Eléctrica , Humanos , Fenómenos Físicos
5.
Sensors (Basel) ; 21(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923854

RESUMEN

Owing to automation trends, research on wireless sensor networks (WSNs) has become prevalent. In addition to static sinks, ground and aerial mobile sinks have become popular for data gathering because of the implementation of WSNs in hard-to-reach or infrastructure-less areas. Consequently, several data-gathering mechanisms in WSNs have been investigated, and the sink type plays a major role in energy consumption and other quality of service parameters, such as packet delivery ratio, delay, and throughput. However, the data-gathering schemes based on different sink types in WSNs have not been investigated previously. This paper reviews such data-gathering frameworks based on three different types of sinks (i.e., static, ground mobile, and aerial mobile sinks), analyzing the data-gathering frameworks both qualitatively and quantitatively. First, we examine the frameworks by discussing their working principles, advantages, and limitations, followed by a qualitative comparative study based on their main ideas, optimization criteria, and performance evaluation parameters. Next, we present a simulation-based quantitative comparison of three representative data-gathering schemes, one from each category. Simulation results are shown in terms of energy efficiency, number of dead nodes, number of exchanged control packets, and packet drop ratio. Finally, lessons learned from the investigation and recommendations made are summarized.

6.
Sensors (Basel) ; 21(8)2021 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-33920627

RESUMEN

In unmanned aerial vehicle (UAV)-aided wireless sensor networks (UWSNs), a UAV is employed as a mobile sink to gather data from sensor nodes. Incorporating UAV helps prolong the network lifetime and avoid the energy-hole problem faced by sensor networks. In emergency applications, timely data collection from sensor nodes and transferal of the data to the base station (BS) is a prime requisite. The timely and safe path of UAV is one of the fundamental premises for effective UWSN operations. It is essential and challenging to identify a suitable path in an environment comprising various obstacles and to ensure that the path can efficiently reach the target point. This paper proposes a hybrid path planning (HPP) algorithm for efficient data collection by assuring the shortest collision-free path for UAV in emergency environments. In the proposed HPP scheme, the probabilistic roadmap (PRM) algorithm is used to design the shortest trajectory map and the optimized artificial bee colony (ABC) algorithm to improve different path constraints in a three-dimensional environment. Our simulation results show that the proposed HPP outperforms the PRM and conventional ABC schemes significantly in terms of flight time, energy consumption, convergence time, and flight path.

7.
Sensors (Basel) ; 20(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003484

RESUMEN

The Internet of Things (IoT), which consists of a large number of small low-cost devices, has become a leading solution for smart cities, smart agriculture, smart buildings, smart grids, e-healthcare, etc. Integrating unmanned aerial vehicles (UAVs) with IoT can result in an airborne UAV-based IoT (UIoT) system and facilitate various value-added services from sky to ground. In addition to wireless sensors, various kinds of IoT devices are connected in UIoT, making the network more heterogeneous. In a UIoT system, for achieving high throughput in an energy-efficient manner, it is crucial to design an efficient medium access control (MAC) protocol because the MAC layer is responsible for coordinating access among the IoT devices in the shared wireless medium. Thus, various MAC protocols with different objectives have been reported for UIoT. However, to the best of the authors' knowledge, no survey had been performed so far that dedicatedly covers MAC protocols for UIoT. Hence, in this study, state-of-the-art MAC protocols for UIoT are investigated. First, the communication architecture and important design considerations of MAC protocols for UIoT are examined. Subsequently, different MAC protocols for UIoT are classified, reviewed, and discussed with regard to the main ideas, innovative features, advantages, limitations, application domains, and potential future improvements. The reviewed MAC protocols are qualitatively compared with regard to various operational characteristics and system parameters. Additionally, important open research issues and challenges with recommended solutions are summarized and discussed.

8.
Sensors (Basel) ; 20(9)2020 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-32380721

RESUMEN

Unmanned aerial vehicle (UAV)-aided wireless sensor networks (UWSNs) can be effectively used for time-critical sensing applications. UAVs can be used to collect the sensed data from sensors and transfer them to a base station. The real-time transfer of data is highly desired in the time-critical applications. However, the medium access control (MAC) protocols designed for UWSNs so far are primarily focused on the efficient use of UAVs to collect data in the sensing areas. In this paper, we propose an energy-efficient and fast MAC (EF-MAC) protocol in UWSNs for time-critical sensing applications. EF-MAC adopts carrier sense multiple access (CSMA) for the registration of sensor nodes with a UAV and time division multiple access (TDMA) with variable slot time for the transmission of collected data. The UAV is equipped with two transceivers to minimize both energy consumption and delay in air-to-ground communication. The energy consumption and delay are formally analyzed and the performance of EF-MAC is evaluated via extensive simulation. The simulation results show that the proposed EF-MAC outperforms the conventional MAC protocols in terms of energy efficiency and communication delay.

9.
Sensors (Basel) ; 20(5)2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-32121478

RESUMEN

Wireless body area networks (WBANs) have become a new paradigm for electronic healthcare applications; for instance, they are used to efficiently monitor patients in real-time. In this paper, an energy-efficient link scheduling (ELS) protocol for cognitive radio body area networks (CRBANs) is proposed, which aims to minimize energy consumption in CRBANs, while achieving higher probabilities of successful transmissions with multiple CRBANs. The proposed ELS transmits packets in the common control channel to control transmission links amongst CRBANs to the gateway and vice versa. The transmissions of CRBANs to the gateway are scheduled at a specific time by the gateway in different data channels, according to the traffic priority of CRBANs. Packet delivery ratio, delay, and energy consumption are evaluated for multiple CRBANs via extensive simulation.


Asunto(s)
Cognición/fisiología , Algoritmos , Redes de Comunicación de Computadores , Atención a la Salud/métodos , Electrónica/métodos , Humanos , Tecnología Inalámbrica
10.
Sensors (Basel) ; 19(16)2019 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-31416188

RESUMEN

Nowadays, wireless multimedia sensor networks (WMSNs) are used in various applications. An energy-efficient and robust routing protocol is essential for WMSNs because the quality of service is important for traffic-intensive multimedia data, such as images and videos. A WMSN with multiple sinks allows cluster heads (CHs) to deliver the collected data to the nearest sink, thereby mitigating the delivery overhead. In this study, we propose a novel evolutionary-game-based routing (EGR) protocol for WMSNs with multiple sinks, in which the evolutionary game theory is exploited for selecting CHs. In EGR, an algorithm to mitigate data redundancy, based on the overlapping field of views of the multimedia sensor nodes, is also presented. This algorithm decreases the number of redundant transmissions, thereby increasing energy efficiency and network performance. According to the performance evaluation results of this study, the proposed EGR significantly outperforms the state-of-art protocols in terms of energy efficiency, end-to-end delay, packet delivery ratio, cluster formation time, and network lifetime.

11.
Sensors (Basel) ; 19(7)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959849

RESUMEN

With the development of wireless communication technology, wireless body area networks (WBANs) have become a fundamental support tool in medical applications. In a real hospital scenario, however, the interference between wireless medical devices and WBANs may cause a high packet drop rate and high latency, which is harmful to patients using healthcare services. Nonetheless, cognitive radio is a promising technology for sharing the precious spectrum, which has high efficiency of the wireless resource. Thus, WBANs with cognitive radio capability are also exploited. We propose a spectrum-aware priority-based link scheduling (SPLS) algorithm for cognitive radio body area networks (CRBANs) in a real hospital scenario. In SPLS, three channels are used: DataCh, EDataCh, and CtrlCh for normal data, emergency data, and control messages, respectively. To avoid collision during data transmission, neighboring CRBANs send messages regarding the channel state with CtrlCh before the scheduling. The CRBANs can share DataCh in the time domain for improving the throughput. The SPLS algorithm allows a CRBAN to access idle channels on the licensed and unlicensed spectrum according to the CRBAN traffic. Our simulation results show that the proposed SPLS outperformed the conventional scheme in terms of packet delivery ratio, system throughput, latency, and energy efficiency.


Asunto(s)
Algoritmos , Tecnología Inalámbrica , Redes de Comunicación de Computadores
12.
Sensors (Basel) ; 18(11)2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30400660

RESUMEN

The increase of application areas in wireless sensor networks demands novel solutions in terms of energy consumption and radio frequency management. Cognitive radio sensor networks (CRSNs) are key for ensuring efficient spectrum management, by making it possible to use the unused licensed frequency spectrum together with the unlicensed frequency spectrum. Sensor nodes powered by energy-constrained batteries necessarily require energy-efficient protocols at the routing and medium access control (MAC) layers. In CRSNs, energy efficiency is more important because the sensor nodes consume additional energy for spectrum sensing and management. To the best of authors' knowledge, there is no survey on "energy-efficient" MAC protocols for CRSNs in the literature, even though a conceptual review on MAC protocols for CRSNs was presented at a conference recently. In this paper, energy-efficient MAC protocols for CRSNs are extensively surveyed and qualitatively compared. Open issues, and research challenges in the design of MAC protocols for CRSNs, are also discussed.

13.
Sensors (Basel) ; 18(5)2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29710790

RESUMEN

Herein, we propose a hybrid multi-channel medium access control (HM-MAC) protocol for wireless body area networks (WBANs) that mitigates inter-WBAN interference significantly. In HM-MAC, a superframe consists of a random access phase and a scheduled access phase. That is, a carrier sensing multiple access with collision avoidance (CSMA/CA) phase and a time division multiple access (TDMA) phase are included in a superframe. The random access phase allows higher-priority users to transmit data packets with low latency and high reliability. The retransmission of data packets is also performed in the random access phase. The periodic data are transmitted in the scheduled phase, resulting in no contention and high reliability. A channel selection algorithm is also proposed to avoid collision between neighboring WBANs. The HM-MAC protocol allows multiple transmissions simultaneously on different channels, resulting in high throughput and low collision. The sensor nodes update idle channels by listening to the beacon signal; consequently, the sensor nodes can change the working channel to reduce inter-WBAN interference. According to our simulation results, HM-MAC achieves a higher packet delivery ratio and higher throughput with lower energy consumption than the conventional scheme in multi-WBAN scenarios. HM-MAC also causes lower end-to-end delays for higher-priority users.

14.
Sensors (Basel) ; 17(10)2017 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-28956827

RESUMEN

As wireless body area networks (WBANs) become a key element in electronic healthcare (e-healthcare) systems, the coexistence of multiple mobile WBANs is becoming an issue. The network performance is negatively affected by the unpredictable movement of the human body. In such an environment, inter-WBAN interference can be caused by the overlapping transmission range of nearby WBANs. We propose a link scheduling algorithm with interference prediction (LSIP) for multiple mobile WBANs, which allows multiple mobile WBANs to transmit at the same time without causing inter-WBAN interference. In the LSIP, a superframe includes the contention access phase using carrier sense multiple access with collision avoidance (CSMA/CA) and the scheduled phase using time division multiple access (TDMA) for non-interfering nodes and interfering nodes, respectively. For interference prediction, we define a parameter called interference duration as the duration during which disparate WBANs interfere with each other. The Bayesian model is used to estimate and classify the interference using a signal to interference plus noise ratio (SINR) and the number of neighboring WBANs. The simulation results show that the proposed LSIP algorithm improves the packet delivery ratio and throughput significantly with acceptable delay.

15.
Sensors (Basel) ; 17(9)2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28869551

RESUMEN

Routing in cognitive radio ad hoc networks (CRAHNs) is a daunting task owing to dynamic topology, intermittent connectivity, spectrum heterogeneity, and energy constraints. Other prominent aspects such as channel stability, path reliability, and route discovery frequency should also be exploited. Several routing protocols have been proposed for CRAHNs in the literature. By stressing on one of the aspects more than any other, however, they do not satisfy all requirements of throughput, energy efficiency, and robustness. In this paper, we propose an energy-efficient and robust multipath routing (ERMR) protocol for CRAHNs by considering all prominent aspects including residual energy and channel stability in design. Even when the current routing path fails, the alternative routing path is immediately utilized. In establishing primary and alternative routing paths, both residual energy and channel stability are exploited simultaneously. Our simulation study shows that the proposed ERMR outperforms the conventional protocol in terms of network throughput, packet delivery ratio, energy consumption, and end-to-end delay.

16.
Sensors (Basel) ; 16(12)2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27999385

RESUMEN

Currently, wireless body area networks (WBANs) are effectively used for health monitoring services. However, in cases where WBANs are densely deployed, interference among WBANs can cause serious degradation of network performance and reliability. Inter-WBAN interference can be reduced by scheduling the communication links of interfering WBANs. In this paper, we propose an interference-aware traffic-priority-based link scheduling (ITLS) algorithm to overcome inter-WBAN interference in densely deployed WBANs. First, we model a network with multiple WBANs as an interference graph where node-level interference and traffic priority are taken into account. Second, we formulate link scheduling for multiple WBANs as an optimization model where the objective is to maximize the throughput of the entire network while ensuring the traffic priority of sensor nodes. Finally, we propose the ITLS algorithm for multiple WBANs on the basis of the optimization model. High spatial reuse is also achieved in the proposed ITLS algorithm. The proposed ITLS achieves high spatial reuse while considering traffic priority, packet length, and the number of interfered sensor nodes. Our simulation results show that the proposed ITLS significantly increases spatial reuse and network throughput with lower delay by mitigating inter-WBAN interference.


Asunto(s)
Algoritmos , Redes de Comunicación de Computadores , Tecnología Inalámbrica , Simulación por Computador , Humanos
17.
Sensors (Basel) ; 16(7)2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27376290

RESUMEN

A cognitive radio sensor network (CRSN) is a wireless sensor network in which sensor nodes are equipped with cognitive radio. In this paper, we propose an energy-efficient game-theory-based spectrum decision (EGSD) scheme for CRSNs to prolong the network lifetime. Note that energy efficiency is the most important design consideration in CRSNs because it determines the network lifetime. The central part of the EGSD scheme consists of two spectrum selection algorithms: random selection and game-theory-based selection. The EGSD scheme also includes a clustering algorithm, spectrum characterization with a Markov chain, and cluster member coordination. Our performance study shows that EGSD outperforms the existing popular framework in terms of network lifetime and coordination overhead.

18.
Sensors (Basel) ; 16(3)2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26999162

RESUMEN

In wireless body area networks (WBANs), various sensors and actuators are placed on/inside the human body and connected wirelessly. WBANs have specific requirements for healthcare and medical applications, hence, standard protocols like the IEEE 802.15.4 cannot fulfill all the requirements. Consequently, many medium access control (MAC) protocols, mostly derived from the IEEE 802.15.4 superframe structure, have been studied. Nevertheless, they do not support a differentiated quality of service (QoS) for the various forms of traffic coexisting in a WBAN. In particular, a QoS-aware MAC protocol is essential for WBANs operating in the unlicensed Industrial, Scientific, and Medical (ISM) bands, because different wireless services like Bluetooth, WiFi, and Zigbee may coexist there and cause severe interference. In this paper, we propose a priority-based adaptive MAC (PA-MAC) protocol for WBANs in unlicensed bands, which allocates time slots dynamically, based on the traffic priority. Further, multiple channels are effectively utilized to reduce access delays in a WBAN, in the presence of coexisting systems. Our performance evaluation results show that the proposed PA-MAC outperforms the IEEE 802.15.4 MAC and the conventional priority-based MAC in terms of the average transmission time, throughput, energy consumption, and data collision ratio.

19.
Sensors (Basel) ; 15(6): 13805-38, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26110407

RESUMEN

A wireless body area sensor network (WBASN) consists of a coordinator and multiple sensors to monitor the biological signals and functions of the human body. This exciting area has motivated new research and standardization processes, especially in the area of WBASN performance and reliability. In scenarios of mobility or overlapped WBASNs, system performance will be significantly degraded because of unstable signal integrity. Hence, it is necessary to consider interference mitigation in the design. This survey presents a comparative review of interference mitigation schemes in WBASNs. Further, we show that current solutions are limited in reaching satisfactory performance, and thus, more advanced solutions should be developed in the future.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología de Sensores Remotos , Procesamiento de Señales Asistido por Computador , Tecnología Inalámbrica , Algoritmos , Humanos
20.
Sensors (Basel) ; 15(4): 9189-209, 2015 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-25903551

RESUMEN

The advancement in electronics, wireless communications and integrated circuits has enabled the development of small low-power sensors and actuators that can be placed on, in or around the human body. A wireless body area network (WBAN) can be effectively used to deliver the sensory data to a central server, where it can be monitored, stored and analyzed. For more than a decade, cognitive radio (CR) technology has been widely adopted in wireless networks, as it utilizes the available spectra of licensed, as well as unlicensed bands. A cognitive radio body area network (CRBAN) is a CR-enabled WBAN. Unlike other wireless networks, CRBANs have specific requirements, such as being able to automatically sense their environments and to utilize unused, licensed spectra without interfering with licensed users, but existing protocols cannot fulfill them. In particular, the medium access control (MAC) layer plays a key role in cognitive radio functions, such as channel sensing, resource allocation, spectrum mobility and spectrum sharing. To address various application-specific requirements in CRBANs, several MAC protocols have been proposed in the literature. In this paper, we survey MAC protocols for CRBANs. We then compare the different MAC protocols with one another and discuss challenging open issues in the relevant research.


Asunto(s)
Tecnología Inalámbrica , Redes de Comunicación de Computadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA