Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 7(3)2017 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-28336896

RESUMEN

Electrospun micro- and nanofibrous poly(glycerol sebacate)-poly(ε-caprolactone) (PGS-PCL) substrates have been extensively used as scaffolds for engineered tissues due to their desirable mechanical properties and their tunable degradability. In this study, we fabricated micro/nanofibrous scaffolds from a PGS-PCL composite using a standard electrospinning approach and then coated them with silver (Ag) using a custom radio frequency (RF) sputtering method. The Ag coating formed an electrically conductive layer around the fibers and decreased the pore size. The thickness of the Ag coating could be controlled, thereby tailoring the conductivity of the substrate. The flexible, stretchable patches formed excellent conformal contact with surrounding tissues and possessed excellent pattern-substrate fidelity. In vitro studies confirmed the platform's biocompatibility and biodegradability. Finally, the potential controlled release of the Ag coating from the composite fibrous scaffolds could be beneficial for many clinical applications.

2.
Ann Biomed Eng ; 45(1): 148-163, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27126775

RESUMEN

The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.


Asunto(s)
Órganos Artificiales , Impresión Tridimensional , Medicina Regenerativa , Ingeniería de Tejidos , Animales , Humanos , Medicina Regenerativa/instrumentación , Medicina Regenerativa/métodos , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
3.
Pharm Biol ; 48(6): 633-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20645735

RESUMEN

The antibacterial activity of thymol has been well established and reported in the scientific literature. Continued suppression of bacterial growth following limited exposure to antimicrobial compounds at different concentrations greater than or equal to the minimum inhibitory concentration level (MIC) and at concentrations less than the MIC can be used as an indicator of biological activity, and are respectively referred to as a post-antibacterial effect (PAE) and a post-antibiotic sub-MIC effect (PA-SME). In this study, the PAE and the PA-SME of thymol against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Bacillus cereus were investigated. A spectrophotometric method was used to determine the PAE and the PA-SME of thymol against the selected test strains. Thymol exhibited a considerable PAE and PA-SME at MIC and sub-MIC concentrations against test strains. The greatest duration of both the PAE and the PA-SME was observed for thymol against E. coli and P. aeruginosa. The PAE and PA-SME times for E. coli were 12 and 8 h, respectively, and for P. aeruginosa were 11 and 7.5 h, respectively. The duration of the PAE and PA-SME observed for S. aureus and B. cereus was shorter than for Gram-negative strains.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Timol/farmacología , Antibacterianos/administración & dosificación , Quimioterapia Combinada , Pruebas de Sensibilidad Microbiana , Espectrofotometría , Timol/administración & dosificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA