Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomech Eng ; 138(6): 061001, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27018454

RESUMEN

Styrene-based block copolymers are promising materials for the development of a polymeric heart valve prosthesis (PHV), and the mechanical properties of these polymers can be tuned via the manufacturing process, orienting the cylindrical domains to achieve material anisotropy. The aim of this work is the development of a computational tool for the optimization of the material microstructure in a new PHV intended for aortic valve replacement to enhance the mechanical performance of the device. An iterative procedure was implemented to orient the cylinders along the maximum principal stress direction of the leaflet. A numerical model of the leaflet was developed, and the polymer mechanical behavior was described by a hyperelastic anisotropic constitutive law. A custom routine was implemented to align the cylinders with the maximum principal stress direction in the leaflet for each iteration. The study was focused on valve closure, since during this phase the fibrous structure of the leaflets must bear the greatest load. The optimal microstructure obtained by our procedure is characterized by mainly circumferential orientation of the cylinders within the valve leaflet. An increase in the radial strain and a decrease in the circumferential strain due to the microstructure optimization were observed. Also, a decrease in the maximum value of the strain energy density was found in the case of optimized orientation; since the strain energy density is a widely used criterion to predict elastomer's lifetime, this result suggests a possible increase of the device durability if the polymer microstructure is optimized. The present method represents a valuable tool for the design of a new anisotropic PHV, allowing the investigation of different designs, materials, and loading conditions.


Asunto(s)
Simulación por Computador , Prótesis Valvulares Cardíacas , Fenómenos Mecánicos , Polímeros/química , Anisotropía , Válvula Aórtica , Diseño de Prótesis , Rotación , Estrés Mecánico
2.
Soft Matter ; 11(16): 3271-8, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25781560

RESUMEN

Load-bearing tissues are composite materials that depend strongly on anisotropic fibre arrangement to maximise performance. One such tissue is the heart valve, with orthogonally arranged fibrosa and ventricularis layers. Their function is to maintain mechanical stress while being resilient. It is postulated that while one layer bears the applied stress, the orthogonal layer helps to regenerate the microstructure when the load is released. The present paper describes changes in the microstructure of a block copolymer with cylindrical morphology, having a bio-inspired microstructure of anisotropic orthogonally oriented layers, under uniaxial strain. To allow structural observations during fast deformation, equivalent to the real heart valve operation, we used a synchrotron X-ray source and recorded 2D SAXS patterns in only 1 ms per frame. The deformation behaviour of the composite microstructure has been reported for two arrangements of the cylinders in skin and core layers. The behaviour is very different to that observed either for uniaxially oriented or isotropic samples. Deformation is far from being affine. Cylinders aligned in the direction of stretch show fragmentation, but complete recovery of the spacing between cylinders on removal of the load. Those oriented perpendicular to the direction of stretch incline at an angle of approximately 25° to their original direction during load.

3.
Biofouling ; 28(5): 433-40, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22554274

RESUMEN

Cordylophora caspia is a hydrozoan which causes biofouling in power plants and is an increasing problem in UK drinking water treatment works. Thermal control is not usually feasible without a ready source of hot water so laboratory experiments were conducted to assess whether using pulsed doses of chlorine is an alternative solution. C. caspia polyps disintegrated after a single 20 min dose (the length of one backwash cycle in water treatment work filter beds) of 2.5 ppm chlorine. Without further treatment colonies regenerated within 3 days, but repeated dosing with chlorine for 20 min each day inhibited this regeneration. The resistance of surviving colonies to chlorine increased over time, although colony size and polyp regeneration continued to fall. These results suggest pulsed treatment with chlorinated backwashes at 2 ppm could be used to control C. caspia biofouling in rapid gravity filters and this may have relevance to other settings where thermal control is not feasible.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Cloro/farmacología , Desinfectantes/farmacología , Hidrozoos/efectos de los fármacos , Purificación del Agua/métodos , Animales , Cloro/administración & dosificación , Desinfectantes/administración & dosificación , Relación Dosis-Respuesta a Droga , Agua Potable , Agua Dulce , Hidrozoos/crecimiento & desarrollo , Centrales Eléctricas
4.
Opt Express ; 17(25): 22747-60, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-20052200

RESUMEN

The ability to quantify the fluorescence signals from multiply labeled biological samples is highly desirable in the life sciences but often difficult, because of spectral overlap between fluorescent species and the presence of autofluorescence. Several so called unmixing algorithms have been developed to address this problem. Here, we present a novel algorithm that combines measurements of lifetime and spectrum to achieve unmixing without a priori information on the spectral properties of the fluorophore labels. The only assumption made is that the lifetimes of the fluorophores differ. Our method combines global analysis for a measurement of lifetime distributions with singular value decomposition to recover individual fluorescence spectra. We demonstrate the technique on simulated datasets and subsequently by an experiment on a biological sample. The method is computationally efficient and straightforward to implement. Applications range from histopathology of complex and multiply labelled samples to functional imaging in live cells.


Asunto(s)
Algoritmos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Inteligencia Artificial , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA