Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(11): e21238, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37908706

RESUMEN

The use of natural fibres for polymer composite applications has been widely researched due to the biodegradable and lightweight nature of natural fibres. To achieve good adhesion and compatibility between the matrix and the fibre filler, prior modification of the fibre surface via the use of various methods has been found to be effective. The natural fibres have been modified using chemical, physical, radiation, grafting and biological methods. The current study aims to evaluate the effect of sodium hydroxide-treated waste pineapple leaf fibres (PALF) content on the chemical, thermal, and morphological properties of polybutylene succinate (PBS) composites. PBS-PALF composites with fibre content ranging from 0 to 20 wt% were prepared using an internal mixer and their properties were studied using Fourier transform infrared (FTIR), X-ray diffraction (XRD), Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA) and Scanning electron microscope (SEM). The FTIR results showed no noticeable functionality differences among the composites, however, carbonyl groups from PBS polymer at ∼1700 cm-1 and hydroxyl groups from PALF at ∼3000 cm-1 were observed in the composites. The water absorption uptake of the composites increased with fibre content due to the hydrophilic nature of the PALF fibres and the highest water absorption percentage achieved was ∼30 %. The incorporation of the fibres into the PBS matrix decreased the crystallinity of the composites as shown by the XRD peaks at 2Ï´ = 22 and 30°. SEM images of the composites with 20 wt% exhibited morphologies where the fibres protruded out from the polymer matrix, and this was ascribed to the agglomerated fibres which were poorly mixed with the matrix at the higher fibre content. Overall, the incorporation of high PALF content in the composites disrupted the crystallinity and thermal stability of the PBS matrix. The composites have potential in industrial agricultural mulching film applications due to their sustainability characteristics.

2.
Materials (Basel) ; 16(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36984407

RESUMEN

Water pollution due to heavy metal ions has become a persistent and increasing problem globally. To combat this, carbonaceous materials have been explored as possible adsorbents of these metal ions from solution. The problem with using these materials on their own is that their lifespan and, therefore, usability is reduced. Hence the need to mask them and an interest in using polymers to do so is picked. This introduces an improvement into other properties as well and opens the way for more applications. This work gives a detailed review of the major carbonaceous materials, graphene and graphene oxide, outlining their origin as well as morphological studies. It also outlines the findings on their effectiveness in removing heavy metal ions from water, as well as their water absorption properties. The section further reports on graphene/polymer and graphene oxide/polymer composites previously studied and their morphological as well as thermal properties. Then the work done in the absorption and adsorption capabilities of these composites is explored, thereby contrasting the two materials. This enables us to choose the optimal material for the desired outcome of advancing further in the utilization of carbonaceous material-based polymer composites to remove heavy metal ions from water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA