Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ultramicroscopy ; 245: 113654, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36470094

RESUMEN

Liquid-Phase Transmission Electron Microscopy (LP-TEM) offers the opportunity to study nanoscale dynamics of phenomena related to materials and life science in a native liquid environment and in real time. Until now, the opportunity to control/induce such dynamics by changing the chemical environment in the liquid flow cell (LFC) has rarely been exploited due to an incomplete understanding of hydrodynamic properties of LP-TEM flow systems. This manuscript introduces a method for hydrodynamic characterization of LP-TEM flow systems based on monitoring transmitted intensity while flowing a strongly electron scattering contrast agent solution. Key characteristic temporal indicators of solution replacement for various channel geometries were experimentally measured. A numerical physical model of solute transport based on realistic flow channel geometries was successfully implemented and validated against experiments. The model confirmed the impact of flow channel geometry on the importance of convective and diffusive solute transport, deduced by experiment, and could further extend understanding of hydrodynamics in LP-TEM flow systems. We emphasize that our approach can be applied to hydrodynamic characterization of any customized LP-TEM flow system. We foresee the implemented predictive model driving the future design of application-specific LP-TEM flow systems and, when combined with existing chemical reaction models, to a flourishing of the planning and interpretation of experimental observations.


Asunto(s)
Hidrodinámica , Modelos Químicos , Indicadores y Reactivos , Fenómenos Físicos , Difusión
2.
Nat Commun ; 13(1): 6850, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36369225

RESUMEN

Phonon polariton (PhP) nanoresonators can dramatically enhance the coupling of molecular vibrations and infrared light, enabling ultrasensitive spectroscopies and strong coupling with minute amounts of matter. So far, this coupling and the resulting localized hybrid polariton modes have been studied only by far-field spectroscopy, preventing access to modal near-field patterns and dark modes, which could further our fundamental understanding of nanoscale vibrational strong coupling (VSC). Here we use infrared near-field spectroscopy to study the coupling between the localized modes of PhP nanoresonators made of h-BN and molecular vibrations. For a most direct probing of the resonator-molecule coupling, we avoid the direct near-field interaction between tip and molecules by probing the molecule-free part of partially molecule-covered nanoresonators, which we refer to as remote near-field probing. We obtain spatially and spectrally resolved maps of the hybrid polariton modes, as well as the corresponding coupling strengths, demonstrating VSC on a single PhP nanoresonator level. Our work paves the way for near-field spectroscopy of VSC phenomena not accessible by conventional techniques.

3.
Chem Commun (Camb) ; 56(62): 8778-8781, 2020 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-32618293

RESUMEN

In this work, we report the first ring opening vapor to solid polymerization of cyclotrisiloxane and N-methyl-aza-2,2,4-trimethylsilacyclopentane by molecular layer deposition (MLD). This process was studied in situ with a quartz crystal microbalance and the thin film was characterized by X-ray photoelectron spectroscopy, ATR-FTIR and high-resolution transmission electron microscopy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA