Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36143655

RESUMEN

In order to further improve the performance of impregnated paper decorated blockboard (ecological board), high-density fiberboard (HDF) was selected as the equilibrium layer to replace the commonly used poplar veneer. Results showed that the performance of HDF ecological board can be comparable to that of poplar veneer ecological board. It had good appearance quality, and its surface scratch resistance, surface wear resistance, water resistance and mechanical properties met the requirements of National Standard GB/T 34722-2017. The surface cracking resistance of the ecological board prepared with HDF as the equilibrium layer reached the highest level (grade 5), far better than that of the poplar veneer ecological board. This was because HDF was a relatively homogeneous material, and its dry shrinkage in both the transverse direction and along the grain direction was much lower than that of the poplar veneer. This characteristic of HDF made it possible to improve the dimensional stability and bending resistance of blockboard substrates under dry and hot conditions. The formaldehyde emission of the HDF ecological board was higher than that of the poplar veneer ecological board, but it met the formaldehyde emission requirements of indoor materials according to GB 18580-2001.

2.
Polymers (Basel) ; 14(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35012121

RESUMEN

When thermoplastic resins such as polyethylene (PE) and polypropylene (PP) are selected as wood adhesives to bond wood particles (fibers, chips, veneers) by using the hot-pressing technique, the formaldehyde emission issue that has long existed in the wood-based panel industry can be effectively solved. In this study, in general, thermoplastic-bonded wood-based panels presented relatively higher mechanical properties and better water resistance and machinability than the conventional urea-formaldehyde resin-bonded wood-based panels. However, the bonding structure of the wood and thermoplastic materials was unstable at high temperatures. Compared with the wood-plastic composites manufactured by the extruding or injection molding methods, thermoplastic-bonded wood-based panels have the advantages of larger size, a wider raw material range and higher production efficiency. The processing technology, bonding mechanism and the performance of thermoplastic-bonded wood-based panels are comprehensively summarized and reviewed in this paper. Meanwhile, the existing problems of this new kind of panel and their future development trends are also highlighted, which can provide the wood industry with foundations and guidelines for using thermoplastics as environmentally friendly adhesives and effectively solving indoor pollution problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA