Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(7)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39056602

RESUMEN

Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.


Asunto(s)
Biomarcadores de Tumor , Técnicas Biosensibles , Nanopartículas , Dióxido de Silicio , Dióxido de Silicio/química , Biomarcadores de Tumor/análisis , Nanopartículas/química , Humanos , Porosidad , Neoplasias/diagnóstico , Técnicas Electroquímicas
2.
J Control Release ; 337: 193-211, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34293320

RESUMEN

Targeted nanomaterials for cancer theranostics have been the subject of an expanding volume of research studies in recent years. Mesoporous silica nanoparticles (MSNs) are particularly attractive for such applications due to possibilities to synthesize nanoparticles (NPs) of different morphologies, pore diameters and pore arrangements, large surface areas and various options for surface functionalization. Functionalization of MSNs with different organic and inorganic molecules, polymers, surface-attachment of other NPs, loading and entrapping cargo molecules with on-desire release capabilities, lead to seemingly endless prospects for designing advanced nanoconstructs exerting multiple functions, such as simultaneous cancer-targeting, imaging and therapy. Describing composition and multifunctional capabilities of these advanced nanoassemblies for targeted therapy (passive, ligand-functionalized MSNs, stimuli-responsive therapy), including one or more modalities for imaging of tumors, is the subject of this review article, along with an overview of developments within a novel and attractive research trend, comprising the use of MSNs for CRISPR/Cas9 systems delivery and gene editing in cancer. Such advanced nanconstructs exhibit high potential for applications in image-guided therapies and the development of personalized cancer treatment.


Asunto(s)
Nanopartículas , Neoplasias , Portadores de Fármacos/uso terapéutico , Sistemas de Liberación de Medicamentos , Edición Génica , Humanos , Neoplasias/tratamiento farmacológico , Porosidad , Medicina de Precisión , Dióxido de Silicio/uso terapéutico
3.
Pharmaceutics ; 13(4)2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33800647

RESUMEN

Ruthenium complexes are attracting interest in cancer treatment due to their potent cytotoxic activity. However, as their high toxicity may also affect healthy tissues, efficient and selective drug delivery systems to tumour tissues are needed. Our study focuses on the construction of such drug delivery systems for the delivery of cytotoxic Ru(II) complexes upon exposure to a weakly acidic environment of tumours. As nanocarriers, mesoporous silica nanoparticles (MSN) are utilized, whose surface is functionalized with two types of ligands, (2-thienylmethyl)hydrazine hydrochloride (H1) and (5,6-dimethylthieno[2,3-d]pyrimidin-4-yl)hydrazine (H2), which were attached to MSN through a pH-responsive hydrazone linkage. Further coordination to ruthenium(II) center yielded two types of nanomaterials MSN-H1[Ru] and MSN-H2[Ru]. Spectrophotometric measurements of the drug release kinetics at different pH (5.0, 6.0 and 7.4) confirm the enhanced release of Ru(II) complexes at lower pH values, which is further supported by inductively coupled plasma optical emission spectrometry (ICP-OES) measurements. Furthermore, the cytotoxicity effect of the released metallotherapeutics is evaluated in vitro on metastatic B16F1 melanoma cells and enhanced cancer cell-killing efficacy is demonstrated upon exposure of the nanomaterials to weakly acidic conditions. The obtained results showcase the promising capabilities of the designed MSN nanocarriers for the pH-responsive delivery of metallotherapeutics and targeted treatment of cancer.

4.
Compr Rev Food Sci Food Saf ; 20(3): 2428-2454, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33665972

RESUMEN

The food industry faces numerous challenges to assure provision of tasty and convenient food that possesses extended shelf life and shows long-term high-quality preservation. Research and development of antimicrobial materials for food applications have provided active antibacterial packaging technologies that are able to meet these challenges. Furthermore, consumers expect and demand sustainable packaging materials that would reduce environmental problems associated with plastic waste. In this review, we discuss antimicrobial composite materials for active food packaging applications that combine highly efficient antibacterial nanoparticles (i.e., metal, metal oxide, mesoporous silica and graphene-based nanomaterials) with biodegradable and environmentally friendly green polymers (i.e., gelatin, alginate, cellulose, and chitosan) obtained from plants, bacteria, and animals. In addition, innovative syntheses and processing techniques used to obtain active and safe packaging are showcased. Implementation of such green active packaging can significantly reduce the risk of foodborne pathogen outbreaks, improve food safety and quality, and minimize product losses, while reducing waste and maintaining sustainability.


Asunto(s)
Antiinfecciosos , Nanopartículas , Animales , Antibacterianos , Embalaje de Alimentos , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA