RESUMEN
BACKGROUND: Induced pluripotent stem cells (iPSCs) show great ability to differentiate into any tissue, making them attractive candidates for pathophysiological investigations. The rise of organ-on-a-chip technology in the past century has introduced a novel way to make in vitro cell cultures that more closely resemble their in vivo environments, both structural and functionally. The literature still lacks consensus on the best conditions to mimic the blood-brain barrier (BBB) for drug screening and other personalized therapies. The development of models based on BBB-on-a-chip using iPSCs is promising and is a potential alternative to the use of animals in research. AIM: To analyze the literature for BBB models on-a-chip involving iPSCs, describe the microdevices, the BBB in vitro construction, and applications. METHODS: We searched for original articles indexed in PubMed and Scopus that used iPSCs to mimic the BBB and its microenvironment in microfluidic devices. Thirty articles were identified, wherein only 14 articles were finally selected according to the inclusion and exclusion criteria. Data compiled from the selected articles were organized into four topics: (1) Microfluidic devices design and fabrication; (2) characteristics of the iPSCs used in the BBB model and their differentiation conditions; (3) BBB-on-a-chip reconstruction process; and (4) applications of BBB microfluidic three-dimensional models using iPSCs. RESULTS: This study showed that BBB models with iPSCs in microdevices are quite novel in scientific research. Important technological advances in this area regarding the use of commercial BBB-on-a-chip were identified in the most recent articles by different research groups. Conventional polydimethylsiloxane was the most used material to fabricate in-house chips (57%), whereas few studies (14.3%) adopted polymethylmethacrylate. Half the models were constructed using a porous membrane made of diverse materials to separate the channels. iPSC sources were divergent among the studies, but the main line used was IMR90-C4 from human fetal lung fibroblast (41.2%). The cells were differentiated through diverse and complex processes either to endothelial or neural cells, wherein only one study promoted differentiation inside the chip. The construction process of the BBB-on-a-chip involved previous coating mostly with fibronectin/collagen IV (39.3%), followed by cell seeding in single cultures (36%) or co-cultures (64%) under controlled conditions, aimed at developing an in vitro BBB that mimics the human BBB for future applications. CONCLUSION: This review evidenced technological advances in the construction of BBB models using iPSCs. Nonetheless, a definitive BBB-on-a-chip has not yet been achieved, hindering the applicability of the models.
RESUMEN
Diabetes mellitus, a complex and heterogeneous disease associated with hyperglycemia, is a leading cause of mortality and reduces life expectancy. Vanadium complexes have been studied for the treatment of diabetes. The effect of complex [VO(bpy)(mal)]·H2O (complex A) was evaluated in a human hepatocarcinoma (HepG2) cell line and in streptozotocin (STZ)-induced diabetic male Wistar rats conditioned in seven groups with different treatments (n = 10 animals per group). Electron paramagnetic resonance and 51V NMR analyses of complex A in high-glucose Dulbecco's Modified Eagle Medium (DMEM) revealed the oxidation and hydrolysis of the oxidovanadium(IV) complex over a period of 24 h at 37 °C to give low-nuclearity vanadates "V1" (H2VO4-), "V2" (H2V2O72-), and "V4" (V4O124-). In HepG2 cells, complex A exhibited low cytotoxic effects at concentrations 2.5 to 7.5 µmol L-1 (IC50 10.53 µmol L-1) and increased glucose uptake (2-NBDG) up to 93%, an effect similar to insulin. In STZ-induced diabetic rats, complex A at 10 and 30 mg kg-1 administered by oral gavage for 12 days did not affect the animals, suggesting low toxicity or metabolic impairment during the experimental period. Compared to insulin treatment alone, complex A (30 mg kg-1) in association with insulin was found to improve glycemia (30.6 ± 6.3 mmol L-1 vs. 21.1 ± 8.6 mmol L-1, respectively; p = 0.002), resulting in approximately 30% additional reduction in glycemia. The insulin-enhancing effect of complex A was associated with low toxicity and was achieved via oral administration, suggesting the potential of complex A as a promising candidate for the adjuvant treatment of diabetes.
Asunto(s)
Diabetes Mellitus Experimental , Animales , Glucemia/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Humanos , Hipoglucemiantes/efectos adversos , Insulina/metabolismo , Insulina/farmacología , Malatos , Masculino , Ratas , Ratas Wistar , Estreptozocina , Vanadatos/química , Vanadio/química , Vanadio/farmacologíaRESUMEN
A promising strategy to overcome multidrug resistance is the use of inhibitors of ABC drug transporters. For this reason, we evaluated the polyoxovanadates (POVs) [V10 O28 ]6- (V10 ), [H6 V14 O38 (PO4 )]5- (V14 ), [V15 O36 Cl]6- (V15 ) and [V18 O42 I]7- (V18 ) as inhibitors of three major multidrug resistance-linked ABC transporters: P-glycoprotein (P-gp), ABCG2 and MRP1. All of the POVs selectively inhibited P-gp. V10 and V18 were the two most promising compounds, with IC50 values of transport inhibition of 25.4 and 22.7 µm, respectively. Both compounds inhibited P-gp ATPase activity, with the same IC50 value of 1.26 µm. V10 and V18 triggered different conformational changes in the P-gp protein with time-dependent inhibition, which was confirmed using the synthesized salt of V10 with rhodamine B, RhoB-V10 . The hydrophilic nature of POVs supports the hypothesis that these compounds target an unusual ligand-binding site, opening new possibilities in the development of potent modulators of ABC transporters.