Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34502551

RESUMEN

The evolutionarily conserved c-Jun N-terminal kinase (JNK) signaling pathway is a critical genetic determinant in the control of longevity. In response to extrinsic and intrinsic stresses, JNK signaling is activated to protect cells from stress damage and promote survival. In Drosophila, global JNK upregulation can delay aging and extend lifespan, whereas tissue/organ-specific manipulation of JNK signaling impacts lifespan in a context-dependent manner. In this review, focusing on several tissues/organs that are highly associated with age-related diseases-including metabolic organs (intestine and fat body), neurons, and muscles-we summarize the distinct effects of tissue/organ-specific JNK signaling on aging and lifespan. We also highlight recent progress in elucidating the molecular mechanisms underlying the tissue-specific effects of JNK activity. Together, these studies highlight an important and comprehensive role for JNK signaling in the regulation of longevity in Drosophila.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Longevidad/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Animales , Encéfalo/citología , Encéfalo/enzimología , Drosophila melanogaster/enzimología , Cuerpo Adiposo/enzimología , Modelos Biológicos , Neuronas/enzimología
2.
Cell Rep ; 20(13): 3043-3056, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28954223

RESUMEN

Spatial arrangement of different neuron types within a territory is essential to neuronal development and function. How development of different neuron types is coordinated for spatial coexistence is poorly understood. In Drosophila, dendrites of four classes of dendritic arborization (C1-C4da) neurons innervate overlapping receptive fields within the larval epidermis. These dendrites are intermittently enclosed by epidermal cells, with different classes exhibiting varying degrees of enclosure. The role of enclosure in neuronal development and its underlying mechanism remain unknown. We show that the membrane-associated protein Coracle acts in C4da neurons and epidermal cells to locally restrict dendrite branching and outgrowth by promoting enclosure. Loss of C4da neuron enclosure results in excessive branching and growth of C4da neuron dendrites and retraction of C1da neuron dendrites due to local inhibitory interactions between neurons. We propose that enclosure of dendrites by epidermal cells is a developmental mechanism for coordinated innervation of shared receptive fields.


Asunto(s)
Dendritas/metabolismo , Epidermis/metabolismo , Proteínas de la Membrana/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales
3.
G3 (Bethesda) ; 6(8): 2397-405, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27260999

RESUMEN

Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.


Asunto(s)
Dendritas/genética , Morfogénesis/genética , Neurogénesis/genética , Sistema Nervioso Periférico/crecimiento & desarrollo , ARN Mensajero/genética , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genoma de los Insectos , Estudio de Asociación del Genoma Completo , Larva/genética , Larva/crecimiento & desarrollo , Neuronas/metabolismo , Células Receptoras Sensoriales/metabolismo
4.
Dev Dyn ; 241(4): 718-31, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22411553

RESUMEN

BACKGROUND: Hox transcription factors play a critical role in the specification of motoneuron subtypes within the spinal cord. Our previous work showed that two orthologous members of this family, Hoxd10 and Hoxd11, exert opposing effects on motoneuron development in the lumbosacral (LS) spinal cord of the embryonic chick: Hoxd10 promotes the development of lateral motoneuron subtypes that project to dorsal limb muscles, while Hoxd11 represses the development of lateral subtypes in favor of medial subtypes that innervate ventral limb muscles and axial muscles. The striking degree of homology between the DNA-binding homeodomains of Hoxd10 and Hoxd11 suggested that non-homeodomain regions mediate their divergent effects. In the present study, we investigate the relative contributions of homeodomain and non-homeodomain regions of Hoxd10 and Hoxd11 to motoneuron specification. RESULTS: Using in ovo electroporation to express chimeric and mutant constructs in LS motoneurons, we find that both the homeodomain and non-homeodomain regions of Hoxd10 are necessary to specify lateral motoneurons. In contrast, non-homeodomain regions of Hoxd11 are sufficient to repress lateral motoneuron fates in favor of medial fates. CONCLUSIONS: Together, our data demonstrate that even closely related Hox orthologues rely on distinct combinations of homeodomain-dependent and -independent mechanisms to specify motoneuron identity.


Asunto(s)
Proteínas Aviares/fisiología , Embrión de Pollo/fisiología , Proteínas de Homeodominio/fisiología , Neuronas Motoras/fisiología , Médula Espinal/embriología , Factores de Transcripción/fisiología , Animales , Diferenciación Celular/genética , Embrión de Pollo/embriología , Regulación del Desarrollo de la Expresión Génica , Neuronas Motoras/citología
5.
Dev Biol ; 330(1): 54-72, 2009 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-19306865

RESUMEN

During normal vertebrate development, Hoxd10 and Hoxd11 are expressed by differentiating motoneurons in restricted patterns along the rostrocaudal axis of the lumbosacral (LS) spinal cord. To assess the roles of these genes in the attainment of motoneuron subtypes characteristic of LS subdomains, we examined subtype complement after overexpression of Hoxd10 or Hoxd11 in the embryonic chick LS cord and in a Hoxd10 loss-of-function mouse embryo. Data presented here provide evidence that Hoxd10 defines the position of the lateral motor column (LMC) as a whole and, in rostral LS segments, specifically promotes the development of motoneurons of the lateral subdivision of the lateral motor column (LMCl). In contrast, Hoxd11 appears to impart a caudal and medial LMC (LMCm) identity to some motoneurons and molecular profiles suggestive of a suppression of LMC development in others. We also provide evidence that Hoxd11 suppresses the expression of Hoxd10 and the retinoic acid synthetic enzyme, retinaldehyde dehydrogenase 2 (RALDH2). In a normal chick embryo, Hoxd10 and RALDH2 are expressed throughout the LS region at early stages of motoneuron differentiation but their levels decline in Hoxd11-expressing caudal LS segments that ultimately contain few LMCl motoneurons. We hypothesize that one of the roles played by Hoxd11 is to modulate Hoxd10 and local retinoic acid levels and thus, perhaps define the caudal boundaries of the LMC and its subtype complement.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Homeodominio/metabolismo , Neuronas Motoras/metabolismo , Médula Espinal/embriología , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Embrión de Pollo , Regulación hacia Abajo , Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Inmunohistoquímica , Vértebras Lumbares/embriología , Ratones , Neuronas Motoras/citología , Sacro/embriología , Médula Espinal/citología , Médula Espinal/metabolismo , Factores de Transcripción/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA