Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecosphere ; 10(2): e02616, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34853712

RESUMEN

Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10-40% per century under current climate and 20-170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics.

2.
Glob Chang Biol ; 24(11): 5500-5517, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30003643

RESUMEN

American chestnut (Castanea dentata) was once an important component forests in the central Appalachians (USA), but it was functionally extirpated nearly a century ago. Attempts are underway to reintroduce blight-resistant chestnut to its former range, but it is uncertain how current forest composition, climate, and atmospheric changes and disturbance regimes will interact to determine future forest dynamics and ecosystem services. The combination of novel environmental conditions (e.g. climate change), a reintroduced tree species and new disturbance regimes (e.g. exotic insect pests, fire suppression) have no analog in the past that can be used to parameterize phenomenological models. We therefore used a mechanistic approach within the LANDIS-II forest landscape model that relies on physiological first principles to project forest dynamics as the outcome of competition of tree cohorts for light and water as a function of temperature, precipitation, CO2 concentration, and life history traits. We conducted a factorial landscape simulation experiment to evaluate specific hypotheses about future forest dynamics in two study sites in the center of the former range of chestnut. Our results supported the hypotheses that climate change would favor chestnut because of its optimal temperature range and relative drought resistance, and that chestnut would be less competitive in the more mesic Appalachian Plateau province because competitors will be less stressed. The hypothesis that chestnut will increase carbon stocks was supported, although the increase was modest. Our results confirm that aggressive restoration is needed regardless of climate and soils, and that increased aggressiveness of chestnut restoration increased biomass accumulation. The hypothesis that chestnut restoration will increase both compositional and structural richness was not supported because chestnut displaced some species and age cohorts. Although chestnut restoration did not markedly enhance carbon stocks, our findings provide hope that this formerly important species can be successfully reintroduced and associated ecosystem services recovered.


Asunto(s)
Secuestro de Carbono , Cambio Climático , Conservación de los Recursos Naturales/métodos , Fagaceae/fisiología , Árboles/fisiología , Fagaceae/crecimiento & desarrollo , Maryland , Árboles/crecimiento & desarrollo
3.
Ecol Appl ; 27(4): 1317-1337, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28263421

RESUMEN

Loss of top predators may contribute to high ungulate population densities and chronic over-browsing of forest ecosystems. However, spatial and temporal variability in the strength of interactions between predators and ungulates occurs over scales that are much shorter than the scales over which forest communities change, making it difficult to characterize trophic cascades in forest ecosystems. We applied the LANDIS-II forest succession model and a recently developed ungulate browsing extension to model how the moose population could interact with the forest ecosystem of Isle Royale National Park, USA, under three different wolf predation scenarios. We contrasted a 100-yr future without wolves (no predation) with two predation scenarios (weak, long-term average predation rates and strong, higher than average rates). Increasing predation rates led to lower peak moose population densities, lower biomass removal rates, and higher estimates of forage availability and landscape carrying capacity, especially during the first 40 yr of simulations. Thereafter, moose population density was similar for all predation scenarios, but available forage biomass and the carrying capacity of the landscape continued to diverge among predation scenarios. Changes in total aboveground live biomass and species composition were most pronounced in the no predation and weak predation scenarios. Consistent with smaller-scale studies, high browsing rates led to reductions in the biomass of heavily browsed Populus tremuloides, Betula papyrifera, and Abies balsamea, and increases in the biomass of unbrowsed Picea glauca and Picea mariana, especially after the simulation year 2050, when existing boreal hardwood stands at Isle Royale are projected to senesce. As a consequence, lower predation rates corresponded with a landscape that progressively shifted toward dominance by Picea glauca and Picea mariana, and lacking available forage biomass. Consistencies with previously documented small-scale successional shifts, and population estimates and trends that approximate those from this and other boreal forests that support moose provide some confidence that these dynamics represent a trophic cascade and therefore provide an important baseline against which to evaluate long-term and large-scale effects of alternative predator management strategies on ungulate populations and forest succession.


Asunto(s)
Ciervos/fisiología , Cadena Alimentaria , Bosques , Lobos/fisiología , Animales , Conservación de los Recursos Naturales , Modelos Biológicos , Parques Recreativos , Densidad de Población , Conducta Predatoria
4.
Ecol Appl ; 22(4): 1278-96, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22827135

RESUMEN

Insect disturbance is often thought to increase fire risk through enhanced fuel loadings, particularly in coniferous forest ecosystems. Yet insect disturbances also affect successional pathways and landscape structure that interact with fire disturbances (and vice-versa) over longer time scales. We applied a landscape succession and disturbance model (LANDIS-II) to evaluate the relative strength of interactions between spruce budworm (Choristoneura fumiferana) outbreaks and fire disturbances in the Boundary Waters Canoe Area (BWCA) in northern Minnesota (USA). Disturbance interactions were evaluated for two different scenarios: presettlement forests and fire regimes vs. contemporary forests and fire regimes. Forest composition under the contemporary scenario trended toward mixtures of deciduous species (primarily Betula papyrifera and Populus spp.) and shade-tolerant conifers (Picea mariana, Abies balsamea, Thuja occidentalis), with disturbances dominated by a combination of budworm defoliation and high-severity fires. The presettlement scenario retained comparatively more "big pines" (i.e., Pinus strobus, P. resinosa) and tamarack (L. laricina), and experienced less budworm disturbance and a comparatively less-severe fire regime. Spruce budworm disturbance decreased area burned and fire severity under both scenarios when averaged across the entire 300-year simulations. Contrary to past research, area burned and fire severity during outbreak decades were each similar to that observed in non-outbreak decades. Our analyses suggest budworm disturbances within forests of the BWCA have a comparatively weak effect on long-term forest composition due to a combination of characteristics. These include strict host specificity, fine-scaled patchiness created by defoliation damage, and advance regeneration of its primary host, balsam fir (A. balsamea) that allows its host to persist despite repeated disturbances. Understanding the nature of the three-way interaction between budworm, fire, and composition has important ramifications for both fire mitigation strategies and ecosystem restoration initiatives. We conclude that budworm disturbance can partially mitigate long-term future fire risk by periodically reducing live ladder fuel within the mixed forest types of the BWCA but will do little to reverse the compositional trends caused in part by reduced fire rotations.


Asunto(s)
Ecosistema , Incendios , Mariposas Nocturnas/fisiología , Árboles , Animales , Simulación por Computador , Conservación de los Recursos Naturales , Monitoreo del Ambiente , Conducta Alimentaria , Larva/fisiología , Minnesota , Modelos Biológicos , Dinámica Poblacional , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA