Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 14(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297887

RESUMEN

Biodegradable polyester/hydroxyapatite microparticles are widely proposed as microcarriers for drug/cell delivery or scaffolds for bone tissue regeneration. The current research implements the surfactant-free approach for the fabrication of polyester-based microparticles filled with hydroxyapatite nanoparticles (nHA) via the oil/water Pickering emulsion solvent evaporation technique for the first time, to the best of our knowledge. The process of polyester microparticle fabrication using nHA for the oil/water interface stabilization was studied as a function of phase used for nHA addition, which allows the preparation of a range of microparticles either filled with nHA or having it as a shell over the polymeric core. The effect of processing conditions (polymer nature, polymer/nHA ratio, ultrasound treatment) on particles' total yield, size distribution, surface and volume morphology, and chemical structure was analyzed using SEM, EDX, Raman spectroscopy, and mapping. Addition of nHA either within the aqueous or oil phase allowed the effective stabilization of the oil/water interface without additional molecular surfactants, giving rise to hybrid microparticles in which total yield, size distribution, and surface morphology depended on all studied processing conditions. Preliminary ultrasound treatment of any phase before the emulsification process led to a complex effect but did not affect the homogeneity of nHA distribution within the polymeric core of the hybrid microparticles.

2.
Polymers (Basel) ; 13(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34685284

RESUMEN

New results are presented for laser formation-in particular, the "drawing" of microstructures in polymer films using continuous-wave (CW) laser radiation λ = 405 nm with an intensity of 0.8-3.7 kW/cm2. The laser drawing was carried out in the polymer system poly-2,2'-p-oxydiphenylene-5,5'-bis-benzimidazole (OPBI), which consists of two phases: a solid polymer matrix with formic acid (HCOOH) dissolved in it. The formation of microstructures, including the stage of foaming, was carried out in three media: air, water and a supercritical carbon dioxide medium containing dissolved molecules of the silver precursor Ag(hfac)COD. The morphological features of foam-like track structures formed in the near-surface layer of the polymer films by laser "drawing" are considered. A model of processes is presented that explains the appearance of periodic structures. The key point of this model is that it considers the participation of the photoinduced mechanism of explosive boiling of formic acid molecules dissolved in the polymer matrix. Using Raman spectroscopy, spectra were obtained and interpreted, which relate to different stages in the formation of microstructures in OPBI films. The effects associated with the peculiarities of luminescent microstructures on the surfaces of glasses in close contact with polymer films during laser "painting" in the air have been studied.

3.
ACS Appl Mater Interfaces ; 8(42): 28880-28887, 2016 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-27704776

RESUMEN

This article presents a new simple method of creating light-absorbing carbon material for optical devices such as bolometers. A simple method of laser microstructuring of graphene oxide is used in order to create such material. The absorption values of more than 98% in the visible and more than 90% in the infrared range are achieved. Moreover thermal properties of the films, such as temperature dependence and the thermal response of the samples, are studied. The change in resistance with temperature is 13 Ohm K-1, temperature coefficient of resistance (TCR) is 0.3% K-1, and the sensitivity is 0.17 V W-1 at 300 K. Thermal conductivity is rather high at ∼104 W m-1 K-1 at 300 K. The designed bolometer operates at room temperature using incandescent lamp as a light source. This technique suggests a new inexpensive way to create a selective absorption coating and/or active layer for optical devices. Developed GO and rGO films have a large surface area and high conductivity. These properties make carbon coatings a perfect candidate for creating a new type of optoelectronic devices (gas sensors, detectors of biological objects, etc.).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA