Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(1): 111899, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36586409

RESUMEN

Endoplasmic reticulum (ER) homeostasis requires molecular regulators that tailor mitochondrial bioenergetics to the needs of protein folding. For instance, calnexin maintains mitochondria metabolism and mitochondria-ER contacts (MERCs) through reactive oxygen species (ROS) from NADPH oxidase 4 (NOX4). However, induction of ER stress requires a quick molecular rewiring of mitochondria to adapt to new energy needs. This machinery is not characterized. We now show that the oxidoreductase ERO1⍺ covalently interacts with protein kinase RNA-like ER kinase (PERK) upon treatment with tunicamycin. The PERK-ERO1⍺ interaction requires the C-terminal active site of ERO1⍺ and cysteine 216 of PERK. Moreover, we show that the PERK-ERO1⍺ complex promotes oxidization of MERC proteins and controls mitochondrial dynamics. Using proteinaceous probes, we determined that these functions improve ER-mitochondria Ca2+ flux to maintain bioenergetics in both organelles, while limiting oxidative stress. Therefore, the PERK-ERO1⍺ complex is a key molecular machinery that allows quick metabolic adaptation to ER stress.


Asunto(s)
Mitocondrias , Oxidorreductasas , Oxidorreductasas/metabolismo , Mitocondrias/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Estrés Oxidativo
2.
Eur J Neurosci ; 56(8): 5177-5190, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083288

RESUMEN

Multiple sclerosis (MS) and its animal models are characterized by cellular inflammation within the central nervous system (CNS). The sources and consequences of this inflammation are currently not completely understood. Critical signs and mediators of CNS inflammation are reactive oxygen species (ROS) that promote inflammation. ROS originate from a variety of redox-reactive enzymes, one class of which catalyses oxidative protein folding within the endoplasmic reticulum (ER). Here, the unfolded protein response and other signalling mechanisms maintain a balance between ROS producers such as ER oxidoreductin 1α (Ero1α) and antioxidants such as glutathione peroxidase 8 (GPx8). The role of ROS production within the ER has so far not been examined in the context of MS. In this manuscript, we examined how components of the ER redox network change upon MS and experimental autoimmune encephalomyelitis (EAE). We found that unlike GPx8, Ero1α increases within both MS and EAE astrocytes, in parallel with an imbalance of other oxidases such of GPx7, and that no change was observed within neurons. This imbalance of ER redox enzymes can reduce the lifespan of astrocytes, while neurons are not affected. Therefore, Ero1α induction makes astrocytes vulnerable to oxidative stress in the MS and EAE pathologies.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Inflamación , Especies Reactivas de Oxígeno/metabolismo
4.
EMBO J ; 38(15): e100871, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31304984

RESUMEN

Reactive oxygen species (ROS) are emerging as important regulators of cancer growth and metastatic spread. However, how cells integrate redox signals to affect cancer progression is not fully understood. Mitochondria are cellular redox hubs, which are highly regulated by interactions with neighboring organelles. Here, we investigated how ROS at the endoplasmic reticulum (ER)-mitochondria interface are generated and translated to affect melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which promote ER-mitochondria communication, are upregulated in melanoma cells and patient samples. TMX knockdown altered mitochondrial organization, enhanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The TMX-knockdown-induced oxidative stress suppressed melanoma proliferation, migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein NFAT1 expression correlates with melanoma stage and metastatic potential. Integrative bioinformatics revealed that genes coding for mitochondrial- and redox-related proteins are under NFAT1 control and indicated that TMX1, TMX3, and NFAT1 are associated with poor disease outcome. Our study unravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that regulates melanoma pathobiology and provides biomarkers indicative of aggressive disease.


Asunto(s)
Melanoma/patología , Proteínas de la Membrana/metabolismo , Factores de Transcripción NFATC/metabolismo , Oxidación-Reducción , Proteína Disulfuro Isomerasas/metabolismo , Tiorredoxinas/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Progresión de la Enfermedad , Retículo Endoplásmico/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Melanoma/metabolismo , Proteínas de la Membrana/genética , Ratones , Mitocondrias/metabolismo , NADPH Oxidasa 4/metabolismo , Trasplante de Neoplasias , Transporte de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Análisis de Supervivencia , Tiorredoxinas/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA