Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(7): e0303791, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954691

RESUMEN

In this paper, we suggest a mathematical model of COVID-19 with multiple variants of the virus under optimal control. Mathematical modeling has been used to gain deeper insights into the transmission of COVID-19, and various prevention and control strategies have been implemented to mitigate its spread. Our model is a SEIR-based model for multi-strains of COVID-19 with 7 compartments. We also consider the circulatory structure to account for the termination of immunity for COVID-19. The model is established in terms of the positivity and boundedness of the solution and the existence of equilibrium points, and the local stability of the solution. As a result of fitting data of COVID-19 in Ghana to the model, the basic reproduction number of the original virus and Delta variant was estimated to be 1.9396, and the basic reproduction number of the Omicron variant was estimated to be 3.4905, which is 1.8 times larger than that. We observe that even small differences in the incubation and recovery periods of two strains with the same initial transmission rate resulted in large differences in the number of infected individuals. In the case of COVID-19, infections caused by the Omicron variant occur 1.5 to 10 times more than those caused by the original virus. In terms of the optimal control strategy, we formulate three control strategies focusing on social distancing, vaccination, and testing-treatment. We have developed an optimal control model for the three strategies outlined above for the multi-strain model using the Pontryagin's Maximum Principle. Through numerical simulations, we analyze three optimal control strategies for each strain and also consider combinations of the two control strategies. As a result of the simulation, all control strategies are effective in reducing disease spread, in particular, vaccination strategies are more effective than the other two control strategies. In addition the combination of the two strategies also reduces the number of infected individuals by 1/10 compared to implementing one strategy, even when mild levels are implemented. Finally, we show that if the testing-treatment strategy is not properly implemented, the number of asymptomatic and unidentified infections may surge. These results could help guide the level of government intervention and prevention strategy formulation.


Asunto(s)
Número Básico de Reproducción , COVID-19 , Modelos Teóricos , SARS-CoV-2 , COVID-19/prevención & control , COVID-19/epidemiología , COVID-19/virología , COVID-19/transmisión , Humanos , Ghana/epidemiología , SARS-CoV-2/genética
2.
PLoS One ; 17(10): e0275851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36279292

RESUMEN

This paper proposes a compartment model (SVEIHRM model) based on a system of ordinary differential equations to simulate the pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).Emergence of mutant viruses gave rise to multiple peaks in the number of confirmed cases. Vaccine developers and WHO suggest individuals to receive multiple vaccinations (the primary and the secondary vaccinations and booster shots) to mitigate transmission of COVID-19. Taking this into account, we include compartments for multiple vaccinations and mutant viruses of COVID-19 in the model. In particular, our model considers breakthrough infection according to the antibody formation rate following multiple vaccinations. We obtain the effective reproduction numbers of the original virus, the Delta, and the Omicron variants by fitting this model to data in Korea. Additionally, we provide various simulations adjusting the daily vaccination rate and the timing of vaccination to investigate the effects of these two vaccine-related measures on the number of infected individuals. We also show that starting vaccinations early is the key to reduce the number of infected individuals. Delaying the start date requires increasing substantially the rate of vaccination to achieve similar target results. In the sensitivity analysis on the vaccination rate of Korean data, it is shown that a 10% increase (decrease) in vaccination rates can reduce (increase) the number of confirmed cases by 35.22% (82.82%), respectively.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA