Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 108(22): 227208, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23003651

RESUMEN

We study spin-diffusion effects within a continuously variable magnetization distribution, integrating with micromagnetics the diffusive model of Zhang and Li [Phys. Rev. Lett. 93, 127204 (2004)]. Current-driven wall motion is, in the steady velocity regime, shown to be adequately described by an effective nonlocal nonadiabatic parameter. This parameter is found to be 20% larger than its local counterpart for a vortex wall in a NiFe nanostrip and hardly modified for a transverse wall. This may account for the yet unexplained experimental evidence that vortex walls move more easily under current when compared with transverse walls. It is shown that this effective parameter can be derived from the domain wall structure at rest.

2.
Phys Rev Lett ; 104(21): 217201, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20867130

RESUMEN

Experimental measurements of domain wall propagation are typically interpreted by comparison to reduced models that ignore both the effects of disorder and the internal dynamics of the domain wall structure. Using micromagnetic simulations, we study vortex wall propagation in magnetic nanowires induced by fields or currents in the presence of disorder. We show that the disorder leads to increases and decreases in the domain wall velocity depending on the conditions. These results can be understood in terms of an effective damping that increases as disorder increases. As a domain wall moves through disorder, internal degrees of freedom get excited, increasing the energy dissipation rate.

3.
Nat Mater ; 2(8): 521-3, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12844143

RESUMEN

In some magnetic devices that have been proposed, the information is transmitted along a magnetic wire of submicrometre width by domain wall (DW) motion. The speed of the device is obviously linked to the DW velocity, and measured values up to 1 km x s(-1) have been reported in moderate fields. Although such velocities were already reached in orthoferrite crystal films with a high anisotropy, the surprise came from their observation in the low-anisotropy permalloy. We have studied, by numerical simulation, the DW propagation in such samples, and observed a very counter-intuitive behaviour. For perfect samples (no edge roughness), the calculated velocity increased with field up to a threshold, beyond which it abruptly decreased--a well-known phenomenon. However, for rough strip edges, the velocity breakdown was found to be suppressed. We explain this phenomenon, and propose that roughness should rather be engineered than avoided when fabricating nanostructures for DW propagation.


Asunto(s)
Cristalografía/métodos , Magnetismo , Ensayo de Materiales/métodos , Modelos Moleculares , Nanotecnología/métodos , Simulación por Computador , Instalación Eléctrica , Dureza , Movimiento (Física) , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA