Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33554862

RESUMEN

We follow the cotranslational biosynthesis of three multispanning Escherichia coli inner membrane proteins in vivo using high-resolution force profile analysis. The force profiles show that the nascent chain is subjected to rapidly varying pulling forces during translation and reveal unexpected complexities in the membrane integration process. We find that an N-terminal cytoplasmic domain can fold in the ribosome exit tunnel before membrane integration starts, that charged residues and membrane-interacting segments such as re-entrant loops and surface helices flanking a transmembrane helix (TMH) can advance or delay membrane integration, and that point mutations in an upstream TMH can affect the pulling forces generated by downstream TMHs in a highly position-dependent manner, suggestive of residue-specific interactions between TMHs during the integration process. Our results support the 'sliding' model of translocon-mediated membrane protein integration, in which hydrophobic segments are continually exposed to the lipid bilayer during their passage through the SecYEG translocon.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Biosíntesis de Proteínas , Secuencias de Aminoácidos , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dominios Proteicos
2.
Inorg Chem ; 59(18): 13709-13718, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32866380

RESUMEN

The design of effective electrocatalysts for carbon dioxide reduction requires understanding the mechanistic underpinnings governing the binding, reduction, and protonation of CO2. A critical aspect to understanding and tuning these factors for optimal catalysis revolves around controlling the electronic environments of the primary and secondary coordination sphere. Herein we report a series of para-substituted cobalt aminopyridine macrocyclic catalysts 2-4 capable of carrying out the electrochemical reduction of CO2 to CO. Under catalytic conditions, complexes 2-4, as well as the unsubstituted cobalt aminopyridine complex 1, exhibit icat/ip values ranging from 144 to 781. Complexes 2 and 4 exhibit a pronounced precatalytic wave suggestive of an ECEC mechanism. A Hammett analysis reveals that ligand modifications with electron-donating groups enhance catalysis (ρ < 0), indicative of positive charge buildup in the transition state. This trend also extends to the CoI/0 potential, where complexes possessing more negative E(CoI/0) reductions exhibit greater icat/ip values. The reported modifications offer a synthetic lever to tune catalytic activity, orthogonal to our previous study of the role of pendant hydrogen bond donors.

3.
Faraday Discuss ; 195: 191-214, 2016 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-27722690

RESUMEN

We investigate the performance of the recently developed kinetically-constrained ring polymer molecular dynamics (KC-RPMD) method for the description of model condensed-phase electron transfer (ET) reactions in which solvent and donor-acceptor dynamics play an important role. Comparison of KC-RPMD with results from Golden-Rule rate theories and numerically exact quantum dynamics calculations demonstrates that KC-RPMD accurately captures the combination of electronic- and nuclear-dynamical effects throughout the Marcus (intermediate solvent friction) and Zusman (large solvent friction) regimes of ET. It is also demonstrated that KC-RPMD accurately describes systems in which the magnitude of the diabatic coupling depends on the position of a dynamical donor-acceptor mode. In addition to these successes, however, we present an unsurprising failure of KC-RPMD to capture the enhancement of the ET rate in the low solvent friction regime associated with nuclear coherence effects. In this analysis, we re-visit several aspects of the original KC-RPMD formulation, including the form of the kinetic constraint and the choice of the mass of the auxiliary electronic variable. In particular, we introduce a Langevin bath for the auxiliary electronic variable to correct for its unphysically low coupling with the nuclear degrees of freedom. This work demonstrates that the KC-RPMD method is well suited for the direct simulation of non-adiabatic donor-acceptor chemistries associated with many complex systems, including those for which solvent dynamics plays an important role in the reaction mechanism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA