Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Behav Brain Res ; 275: 131-5, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25196633

RESUMEN

Prematurity and neonatal growth restriction (GR) are risk factors for autism and attention deficit hyperactivity disorder (ADHD). Leptin production is suppressed during periods of undernutrition, and we have shown that isolated neonatal leptin deficiency leads to adult hyperactivity while neonatal leptin supplementation normalizes the brain morphology of GR mice. We hypothesized that neonatal leptin would prevent the development of GR-associated behavioral abnormalities. From postnatal day 4-14, C57BL/6 mice were randomized to daily injections of saline or leptin (80ng/g), and GR was identified by a weanling weight below the tenth percentile. The behavioral phenotypes of GR and control mice were assessed beginning at 4 months. Within the tripartite chamber, GR mice had significantly impaired social interaction. Baseline escape times from the Barnes maze were faster for GR mice (65+/-6s vs 87+/-7s for controls, p<0.05), but GR mice exhibited regression in their escape times on days 2 and 3 (56% regressed vs 22% of control saline mice, p<0.05). Compared to controls, GR mice entered the open arms of the elevated plus maze more often and stayed there longer (72+/-10s vs 36+/-5s, p<0.01). Neonatal leptin supplementation normalized the behavior of GR mice across all behavioral assays. In conclusion, GR alters the social interactions, learning and activity of mice, and supplementation with the neurotrophic hormone leptin mitigates these effects. We speculate neonatal leptin deficiency may contribute to the adverse neurodevelopmental outcomes associated with postnatal growth restriction, and postnatal leptin therapy may be protective.


Asunto(s)
Conducta Animal/fisiología , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/etiología , Discapacidades del Desarrollo/metabolismo , Leptina/metabolismo , Restricción Física/efectos adversos , Análisis de Varianza , Animales , Animales Recién Nacidos , Ansiedad/etiología , Conducta Animal/efectos de los fármacos , Discapacidades del Desarrollo/prevención & control , Modelos Animales de Enfermedad , Esquema de Medicación , Miedo/psicología , Lóbulo Frontal/patología , Relaciones Interpersonales , Leptina/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Aprendizaje Espacial
2.
J Nutr Metab ; 2012: 431574, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22570769

RESUMEN

Background. Selective serotonin reuptake inhibitor (SSRI) therapy complicates up to 10% of pregnancies. During therapy, SSRIs exert pleiotropic antidepressant, anorexigenic, and neurotrophic effects. Intrauterine SSRI exposure has been modeled by neonatal administration to developmentally immature rodents, and it has paradoxically elicited features of adult depression. We hypothesized neonatal SSRI exposure likewise programs a rebound hypermetabolic state in adult mice. Methods. C57BL/6 pups were randomized to saline or sertraline (5 mg/kg/d) from P1-P14. Because estrogen increases tryptophan hydroxylase 2 (TPH2) expression, a subset of female mice underwent sham surgery or bilateral ovariectomy (OVX). Metabolic rate was determined by indirect calorimetry. Results. In both male and female mice, neonatal SSRI exposure increased adult caloric intake and metabolic rate. SSRI-exposed female mice had significantly decreased adult weight with a relative increase in brain weight and melatonin excretion, independent of ovarian status. Cerebral cortex TPH2 expression was increased in SSRI-exposed male mice but decreased in OVX SSRI-exposed female mice. Conclusions. SSRI exposure during a critical neurodevelopmental window increases adult caloric intake and metabolic rate. Ovarian status modulated central TPH2 expression, but not adult energy balance, suggesting programmed neural connectivity or enhanced melatonin production may play a more important role in the post-SSRI hypermetabolic syndrome.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA