Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
R Soc Open Sci ; 8(8): 210367, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34386253

RESUMEN

There is a recent interest in understanding and exploiting the intriguing properties of space-time metamaterials. In the current manuscript, the time periodic circuit theory is exploited to introduce an appropriate translation operator that fully describes arbitrary space-time metamaterials. It is shown that the underlying mathematical machinery is identical to the one used in the analysis of linear time invariant periodic structures, where time and space eigen-decompositions are successively employed. We prove some useful properties the translation operator exhibits. The wave propagation inside the space time periodic metamaterial and the terminal characteristics can be rigorously determined via the expansion in the operators eigenvectors (space-time Bloch waves). Two examples are provided that demonstrate how to apply the framework. In the first, a space time modulated composite right left handed transmission line is studied and results are verified via time domain computations. Furthermore, we apply the theory to explain the non-reciprocal behaviour observed on a nonlinear transmission line manufactured in our lab. Bloch-waves are computed from the extracted circuit parameters. Results predicted using the developed machinery agree with both measurements and time domain analysis. Although the analysis was carried out for electric circuits, the approach is valid for different domains such as acoustic and elastic media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA