Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38399889

RESUMEN

In this research, the influence of titanium dioxide (TiO2) nanoparticles and their modifications on the weathering resistance of untreated and heat-treated wood was studied. The wood samples were coated with polyacrylate waterborne emulsion coatings that contain nano-TiO2 in the amount of 0.75 wt.%. Two types of modifiers were used to modify the nano-TiO2 surface: 2,2'-azobis(2-methylpropionamide) dihydrochloride (AIBA) and 3-aminopropyltrimethoxy silane (AMPTS). Coated and uncoated wood samples were exposed to accelerated weathering by application of sunlight, water and moisture for 360 h. During the research, the dry film thickness, color, gloss and hardness of the surface of the samples were measured. The obtained results showed that the effect of the addition and surface modification of nano-TiO2 on the color and gloss stability was different on untreated and heat-treated ash wood, and that accelerated weathering causes an increase in surface hardness and a decrease in thickness of the dry coating.

2.
Polymers (Basel) ; 14(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36559740

RESUMEN

This study analysed the bonding mechanisms and strength between wood and non-wood implants in producing laminated oak-wood beams. The suitability of different types of adhesives, namely for load-bearing and general purpose, was also analysed. Three different types of non-wood implants-carbon fibres, glass fibres, and aluminium were glued with epoxy resin (ER), thermoplastic 1-k polyurethane adhesives (PUR), structural polyurethane adhesives (PUR 2 and PUR 3), and polyvinyl acetate (PVAc) adhesives and bonds were tested for shear strength (SS) according to ISO 6238:2018. Results of the bond quality expressed as the ultimate load to failure and displacement were recorded using the universal mechanical testing machine in combination with the digital image correlation (DIC) method. Before the shear test, all the samples were conditioned in dry and wet climatic conditions. Test results indicated that the application of PUR adhesives for bonding carbon and glass fibres with oak wood could sufficiently replace two-component ER, which is generally recommended for such purposes but is very challenging to utilise in industrial conditions. PVAc adhesives proved efficient only for combination with AL implants and in dry conditions. Aluminium sheets were shown to require surface pre-treatment, such as sanding and degreasing or a different type of adhesive to achieve sufficient adhesion.

3.
Polymers (Basel) ; 13(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204177

RESUMEN

Wood is a truly sustainable and aesthetically pleasant material used in indoor and outdoor applications. Every material, including wood, is expected to have long-term durability and to retain its original appearance over time. One of the major disadvantages of wood is the deterioration of its surface when exposed outdoors, known as weathering. Although weathering is primarily a surface phenomenon, it is an important issue for wood products as it affects their appearance, service life, and wood-coating performance. To encourage the use of wood as a material for joinery and other building components, the results of research into increasing the weathering resistance of wood are extremely significant. The development of weathering protection methods is of great importance to reduce the maintenance requirements for wood exposed outdoors and can have a major environmental impact. There are various methods of protecting wood surfaces against weathering. This paper provides a literature survey on the recent research results in protecting wood from weathering. The topics covered include surface treatments of wood with photostabilizers; protection with coatings; the deposition of thin film onto wood surfaces; treatments of wood with inorganic metal compounds and bio-based water repellents; the chemical modification of wood; the modification of wood and wood surfaces with thermosetting resins, furfuryl alcohol, and DMDHEU; and the thermal modification of wood.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA