Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38915391

RESUMEN

Vector atomic magnetometers that incorporate electromagnetically induced transparency (EIT) allow for precision measurements of magnetic fields that are sensitive to the directionality of the observed field by virtue of fundamental physics. However, a practical methodology of accurately recovering the longitudinal angle of the local field through observations of EIT spectra has not been established. In this work, we address this problem of angle determination with an unsupervised machine learning algorithm utilizing nonlinear dimensionality reduction. The proposed algorithm was developed to interface with spectroscopic measurements from an EIT-based atomic rubidium magnetometer and uses kernel principal component analysis (KPCA) as an unsupervised feature extraction tool. The resulting KPCA features allow each EIT spectrum measurement to be represented by a single coordinate in a new reduced dimensional feature space, thereby streamlining the process of angle determination. A supervised support vector regression (SVR) machine was implemented to model the resulting relationship between the KPCA projections and field direction. If the magnetometer is configured so that the azimuthal angle of the field is defined with a polarization lock, the KPCA-SVR algorithm is capable of predicting the longitudinal angle of the local magnetic field within 1 degree of accuracy and the magnitude of the absolute field with a resolution of 70 nT. The combined scalar and angular sensitivity of this method make the KPCA-enabled EIT magnetometer competitive with conventional vector magnetometry methods.

2.
Opt Express ; 30(16): 29401-29408, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299115

RESUMEN

In this work, we theoretically and experimentally demonstrate the possibility to create an image of an opaque object using a few-photon thermal optical field. We utilize the quadrature-noise shadow imaging (QSI) technique that detects the changes in the quadrature-noise statistics of the probe beam after its interaction with an object. We show that such a thermal QSI scheme has an advantage over the classical differential imaging when the effect of dark counts is considered. At the same time, the easy availability of thermal sources for any wavelength makes the method practical for broad range of applications, not accessible with, e.g., quantum squeezed light. As a proof of principle, we implement this scheme by two different light sources: a pseudo-thermal beam generated by rotating ground glass (RGG) method and a thermal beam generated by four-wave mixing (FWM) method. The RGG method shows simplicity and robustness of QSI scheme while the FWM method validates theoretical signal-to-noise ratio predictions. Finally, we demonstrate low-light imaging abilities with QSI by imaging a biological specimen on a CCD camera, detecting as low as 0.03 photons on average per pixel per 1.7 µs exposure.

3.
Opt Express ; 30(21): 37938-37945, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36258372

RESUMEN

We combine single-pixel imaging and homodyne detection to perform full object recovery (phase and amplitude). Our method does not require any prior information about the object or the illuminating fields. As a demonstration, we reconstruct the optical properties of several semi-transparent objects and find that the reconstructed complex transmission has a phase precision of 0.02 radians and a relative amplitude precision of 0.01.

4.
Phys Rev Lett ; 125(11): 113602, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32975994

RESUMEN

We present a technique for squeezed light detection based on direct imaging of the displaced-squeezed-vacuum state using a CCD camera. We show that the squeezing parameter can be accurately estimated using only the first two moments of the recorded pixel-to-pixel photon fluctuation statistics, with accuracy that rivals that of the standard squeezing detection methods such as a balanced homodyne detection. Finally, we numerically simulate the camera operation, reproducing the noisy experimental results with low signal samplings and confirming the theory with high signal samplings.

5.
Nature ; 581(7807): 159-163, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405021

RESUMEN

The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit1, which is proportional to [Formula: see text]. This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states2. Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 1011 rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states3,4 to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments5-10, with a corresponding angular variance of the squeezed collective spin of 4.6 × 10-13 radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry.

6.
Phys Rev Lett ; 123(20): 203604, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31809119

RESUMEN

Spatially splitting nonclassical light beams is in principle prohibited due to noise contamination during beam splitting. We propose a platform based on thermal motion of atoms to realize spatial multiplexing of squeezed light. Light channels of separate spatial modes in an antirelaxation coated vapor cell share the same long-lived atomic coherence jointly created by all channels through the coherent diffusion of atoms, which in turn enhances the individual channel's nonlinear process responsible for light squeezing. Consequently, it behaves as squeezed light in one optical channel transferring to other distant channels even with laser powers below the threshold for squeezed light generation. An array of squeezed light beams is created with low laser power ∼ milliwatt. This approach holds great promise for applications in a multinode quantum network and quantum enhanced technologies such as quantum imaging and sensing.

7.
Opt Lett ; 42(14): 2846-2849, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28708184

RESUMEN

We present experimental results demonstrating controllable dispersion in a ring laser by monitoring the lasing-frequency response to cavity-length variations. Pumping on an N-type level configuration in Rb87, we tailor the intra-cavity dispersion slope by varying experimental parameters, such as pump-laser frequency, atomic density, and pump power. As a result, we can tune the pulling factor, i.e., the ratio of the laser frequency shift to the empty cavity frequency shift, of our laser by more than an order of magnitude.

8.
Opt Lett ; 41(6): 1146-9, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26977655

RESUMEN

We report on experimentally observed addition, subtraction, and cancellation of orbital angular momentum (OAM) in the process of parametric four-wave mixing that results in frequency up- and down-converted emission in Rb vapor. Specific features of OAM transfer from resonant laser fields with different optical topological charges to the spatially and temporally coherent blue light (CBL) have been considered. We have observed the conservation of OAM in nonlinear wave mixing in a wide range of experimental conditions, including a noncollinear geometry of the applied laser beams, and furthermore, that the CBL accumulates the total OAM of the applied laser light. Spectral and power dependences of vortex and plane wavefront blue light beams have been compared.

9.
Opt Lett ; 40(6): 1109-12, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25768194

RESUMEN

We suggest a technique based on the transfer of topological charge from applied laser radiation to directional and coherent optical fields generated in ladder-type excited atomic media to identify the major processes responsible for their appearance. As an illustration, in Rb vapors, we analyze transverse intensity and phase profiles of the forward-directed collimated blue and near-IR light using self-interference and astigmatic transformation techniques when either or both of two resonant laser beams carry orbital angular momentum. Our observations unambiguously demonstrate that emission at 1.37 µm is the result of a parametric four-wave mixing process involving only one of the two applied laser fields.

10.
Opt Lett ; 39(4): 1093-6, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24562286

RESUMEN

We investigated the propagation of a squeezed optical field, generated via the polarization self-rotation effect, with a sinusoidally modulated degree of squeezing through an atomic medium with anomalous dispersion. We observed the advancement of the signal propagating through a resonant Rb vapor compared to the reference signal, propagating in air. The measured advancement time grew linearly with atomic density, reaching a maximum of 11±1 µs, which corresponded to a negative group velocity of v(g)≈-7,000 m/s. We also confirmed that the increasing advancement was accompanied by a reduction of output squeezing levels due to optical losses, in good agreement with theoretical predictions.

11.
Opt Lett ; 38(22): 4833-6, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24322144

RESUMEN

We demonstrated that by using a pump field with nonzero orbital angular momentum (OAM) in the polarization self-rotation squeezing process it is possible to generate a squeezed vacuum optical field with the matching OAM. We found a similar level of maximum quantum noise reduction for a first-order Laguerre-Gaussian pump beam and a regular Gaussian pump beam, even though the optimal operational conditions differed in these two cases. Also, we investigated the effect of self-defocusing on the level of the vacuum squeezing by simultaneously monitoring the minimum quantum noise level and the output beam transverse profile at various pump laser powers and atomic densities and found no direct correlations between the increased beam size and the degree of measured squeezing.

12.
Opt Lett ; 34(22): 3529-31, 2009 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-19927200

RESUMEN

We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magnetic field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm(2) and the field detection uncertainty is 0.14 mG per 10 microm x 10 microm image pixel.


Asunto(s)
Magnetismo , Rubidio/química , Campos Electromagnéticos , Volatilización
13.
Opt Lett ; 33(11): 1213-5, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18516177

RESUMEN

We observed squeezed vacuum light at 795 nm in (87)Rb vapor via resonant polarization self-rotation and report noise sidebands suppression of approximately 1 dB below shot-noise level spanning from 30 kHz to 1.2 MHz frequencies. To our knowledge, this is the first demonstration of submegahertz quadrature vacuum squeezing in atomic systems. The spectral range of observed squeezing matches well typical bandwidths of electromagnetically induced transparency (EIT) resonances, making this simple technique for generation of optical fields with nonclassical statistics at atomic transitions wavelengths attractive for EIT-based quantum information protocols applications.

14.
Opt Lett ; 33(2): 92-4, 2008 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18197202

RESUMEN

We report the generation of a stable continuous-wave low-frequency squeezed vacuum field with a squeezing level of 7.4+/-0.1 dB at 1064 nm, the wavelength at which laser-interferometric gravitational wave (GW) detectors operate, using periodically poled KTiOPO4 (PPKTP) in a subthreshold optical parametric oscillator. The squeezing was observed in a broad band of frequencies above 700 Hz where the sensitivity of the currently operational GW detectors is limited by shot noise. PPKTP has the advantages of higher nonlinearity, smaller pump-induced seed absorption, and wider temperature tuning range than alternative nonlinear materials such as MgO-doped or periodically poled LiNbO3, and is, therefore, an excellent material for generation of squeezed vacuum fields for application to laser interferometers for GW detection.

15.
Phys Rev Lett ; 97(15): 151103, 2006 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-17155314

RESUMEN

We propose a class of displacement- and laser-noise-free gravitational-wave-interferometer configurations, which does not sense nongeodesic mirror motion and laser noise, but provides a nonvanishing gravitational-wave signal. Our interferometers consist of four mirrors and two beam splitters, which form four Mach-Zehnder interferometers. By contrast to previous works, no composite mirrors with multiple reflective surfaces are required. Each mirror in our configuration is sensed redundantly, by at least two pairs of incident and reflected beams. Displacement- and laser-noise-free detection is achieved when output signals from these four interferometers are combined appropriately. Our 3-dimensional interferometer configuration has a low-frequency response proportional to f2, which is better than the f3 achievable by previous 2-dimensional configurations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA