Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22282923

RESUMEN

Findings of recent observational studies have been interpreted as supporting immune imprinting of COVID-19 vaccines. In this work, we clarify that the current discussion can be mapped to an attempt to estimate the direct effect of vaccine boosters on SARS-CoV-2 reinfections, and that such direct effect cannot be correctly estimated with observational data. We conclude that recent observational estimates regarding immune imprinting are fundamentally biased, and that the increased risk of reinfection in individuals vaccinated with a vaccine booster compared to no booster is expected even if the immune imprinting hypothesis is false. We use graphical methods (directed acyclic graphs), data simulations and analysis of real-life data to illustrate the mechanism and magnitude of this bias.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22278186

RESUMEN

IntroductionThe COVID-19 booster vaccination programme in England used both BNT162b2 and mRNA-1273 vaccines. Direct comparisons of the effectiveness against severe COVID-19 of these two vaccines for boosting have not been made in trials or observational data. MethodsOn behalf of NHS England, we used the OpenSAFELY-TPP database to match adult recipients of each vaccine type on date of vaccination, primary vaccine course, age, and other characteristics. Recipients were eligible if boosted between 29 October 2021 and 31 January 2022, and followed up for 12 weeks. Outcomes were positive SARS-CoV-2 test, COVID-19 hospitalisation, and COVID-19 death. We estimated the cumulative incidence of each outcome, and quantified comparative effectiveness using risk differences (RD) and hazard ratios (HRs). Results1,528,431 people were matched in each group, contributing a total 23,150,504 person-weeks of follow-up. The 12-week risks per 1,000 people of positive SARS-CoV-2 test were 103.2 (95%CI 102.4 to 104.0) for BNT162b2 and 96.0 (95.2 to 96.8) for mRNA-1273: the HR comparing mRNA-1273 with BNT162b2 was 0.92 (95%CI 0.91 to 0.92). For COVID-19 hospitalisations the 12-week risks per 1,000 were 0.65 (95%CI 0.56 to 0.75) and 0.44 (0.36 to 0.54): HR 0.67 (95%CI 0.58 to 0.78). COVID-19 deaths were rare: the 12-week risks per 1,000 were 0.03 (95%CI 0.02 to 0.06) and 0.01 (0.01 to 0.02): HR 1.23 (95%CI 0.59 to 2.56). Comparative effectiveness was generally similar within subgroups defined by the primary course vaccine brand, age, prior SARS-CoV-2 infection and clinical vulnerability. ConclusionBooster vaccination with mRNA-1273 COVID-19 vaccine was more effective than BNT162b2 in preventing SARS-CoV-2 infection and COVID-19 hospitalisation during the first 12 weeks after vaccination, during a period of Delta followed by Omicron variant dominance.

3.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22276026

RESUMEN

BackgroundThe UK COVID-19 vaccination programme delivered its first "booster" doses in September 2021, initially in groups at high risk of severe disease then across the adult population. The BNT162b2 Pfizer-BioNTech vaccine was used initially, with Moderna mRNA-1273 subsequently also used. MethodsWe used the OpenSAFELY-TPP database, covering 40% of English primary care practices and linked to national coronavirus surveillance, hospital episodes, and death registry data, to estimate the effectiveness of boosting with BNT162b2 compared with no boosting in eligible adults who had received two primary course vaccine doses between 16 September and 16 December 2021 when the Delta variant of SARS-CoV-2 was dominant. Follow up was for up to 10 weeks. Each booster recipient was matched with an unboosted control on factors relating to booster priority status and prior immunisation. Additional factors were adjusted for in Cox models estimating hazard ratios (HRs). Outcomes were positive SARS-CoV-2 test, COVID-19 hospitalisation, COVID-19 death and non-COVID-9 death. Booster vaccine effectiveness was defined as 1-HR. ResultsAmong 4,352,417 BNT162b2 booster recipients matched with unboosted controls, estimated effectiveness of a booster dose compared with two doses only was 50.7% (95% CI 50.1-51.3) for positive SARS-CoV-2 test, 80.1% (78.3-81.8) for COVID-19 hospitalisation, 88.5% (85.0-91.1) for COVID-19 death, and 80.3% (79.0-81.5) for non-COVID-19 death. Estimated effectiveness was similar among those who had received a BNT162b2 or ChAdOx1-S two-dose primary vaccination course, but effectiveness against severe COVID-19 was slightly lower in those classified as clinically extremely vulnerable (76.3% (73.1-79.1) for COVID-19 hospitalisation, and 85.1% (79.6-89.1) for COVID-19 death). Estimated effectiveness against each outcome was lower in those aged 18-65 years than in those aged 65 and over. ConclusionOur findings are consistent with strong protection of BNT162b2 boosting against positive SARS-CoV-2 test, COVID-19 hospitalisation, and COVID-19 death.

4.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-22272804

RESUMEN

BackgroundThe rate at which COVID-19 vaccine effectiveness wanes over time is crucial for vaccination policies, but is incompletely understood with conflicting results from different studies. MethodsThis cohort study, using the OpenSAFELY-TPP database and approved by NHS England, included individuals without prior SARS-CoV-2 infection assigned to vaccines priority groups 2-12 defined by the UK Joint Committee on Vaccination and Immunisation. We compared individuals who had received two doses of BNT162b2 or ChAdOx1 with unvaccinated individuals during six 4-week comparison periods, separately for subgroups aged 65+ years; 16-64 years and clinically vulnerable; 40-64 years and 18-39 years. We used Cox regression, stratified by first dose eligibility and geographical region and controlled for calendar time, to estimate adjusted hazard ratios (aHRs) comparing vaccinated with unvaccinated individuals, and quantified waning vaccine effectiveness as ratios of aHRs per-4-week period. The outcomes were COVID-19 hospitalisation, COVID-19 death, positive SARS-CoV-2 test, and non-COVID-19 death. FindingsThe BNT162b2, ChAdOx1 and unvaccinated groups comprised 1,773,970, 2,961,011 and 2,433,988 individuals, respectively. Waning of vaccine effectiveness was similar across outcomes and vaccine brands: e.g. in the 65+ years subgroup ratios of aHRs versus unvaccinated for COVID-19 hospitalisation, COVID-19 death and positive SARS-CoV-2 test ranged from 1.23 (95% CI 1.15-1.32) to 1.27 (1.20-1.34) for BNT162b2 and 1.16 (0.98-1.37) to 1.20 (1.14-1.27) for ChAdOx1. Despite waning, rates of COVID-19 hospitalisation and COVID-19 death were substantially lower among vaccinated individuals compared to unvaccinated individuals up to 26 weeks after second dose, with estimated aHRs <0.20 (>80% vaccine effectiveness) for BNT162b2, and <0.26 (>74%) for ChAdOx1. By weeks 23-26, rates of SARS-CoV-2 infection in fully vaccinated individuals were similar to or higher than those in unvaccinated individuals: aHRs ranged from 0.85 (0.78-0.92) to 1.53 (1.07-2.18) for BNT162b2, and 1.21 (1.13-1.30) to 1.99 (1.94-2.05) for ChAdOx1. InterpretationThe rate at which estimated vaccine effectiveness waned was strikingly consistent for COVID-19 hospitalisation, COVID-19 death and positive SARS-CoV-2 test, and similar across subgroups defined by age and clinical vulnerability. If sustained to outcomes of infection with the Omicron variant and to booster vaccination, these findings will facilitate scheduling of booster vaccination doses.

5.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21266189

RESUMEN

BackgroundEffective, safe, and affordable antivirals are needed for COVID-19. Tenofovir has not been studied in randomized trials despite evidence consistent with its effectiveness against COVID-19. MethodsWe studied HIV-positive individuals on antiretroviral therapy (ART) in 2020 at 69 HIV clinics in Spain. We collected data on sociodemographics, ART, CD4-cell count, HIV-RNA viral load, comorbidities and the following outcomes: laboratory-confirmed SARS-CoV-2 infection, COVID-19 hospitalization, intensive care unit (ICU) admission and death. We compared the 48-week risks for individuals receiving tenofovir disoproxil fumarate (TDF)/emtricitabine (FTC), tenofovir alafenamide (TAF)/ FTC, abacavir (ABC)/lamivudine (3TC), and other regimes. All estimates were adjusted for clinical and sociodemographic characteristics via inverse probability weighting. ResultsOf 51,558 eligible individuals, 39.6% were on TAF/FTC, 11.9% on TDF/FTC, 26.6% on ABC/3TC, 21.8% on other regimes. There were 2,402 documented SARS-CoV-2 infections (425 hospitalizations, 45 ICU admissions, 37 deaths). Compared with TAF/FTC, the estimated risk ratios (RR) (95% CI) of hospitalization were 0.66 (0.43, 0.91) for TDF/FTC and 1.29 (1.02, 1.58) for ABC/3TC, the RRs of ICU admission were 0.28 (0.11, 0.90) for TDF/FTC and 1.39 (0.70, 2.80) for ABC/3TC, and the RRs of death were 0.37 (0.23, 1.90) for TDF/FTC and 2.02 (0.88-6.12) for ABC/3TC. The corresponding RRs of hospitalization for TDF/FTC were 0.49 (0.24, 0.81) in individuals [≥]50 years and 1.15 (0.59, 1.93) in younger individuals. ConclusionOur findings suggest that, compared with other antiretrovirals, TDF/FTC lowers COVID-19 severity among HIV-positive individuals with virological control. This protective effect may be restricted to individuals aged 50 years and older.

6.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21264937

RESUMEN

ObjectivesTo compare the effectiveness of the BNT162b2 mRNA (Pfizer-BioNTech) and the ChAdOx1 (Oxford-AstraZeneca) COVID-19 vaccines against infection and COVID-19 disease in health and social care workers. DesignCohort study, emulating a comparative effectiveness trial. SettingLinked primary care, hospital, and COVID-19 surveillance records available within the OpenSAFELY-TPP research platform. Participants317,341 health and social care workers vaccinated between 4 January and 28 February 2021, registered with a GP practice using the TPP SystmOne clinical information system in England, and not clinically extremely vulnerable. InterventionsVaccination with either BNT162b2 or ChAdOx1 administered as part of the national COVID-19 vaccine roll-out. Main outcome measuresRecorded SARS-CoV-2 positive test, or COVID-19 related Accident and Emergency attendance or hospital admission occurring within 20 weeks of vaccination. ResultsThe cumulative incidence of each outcome was similar for both vaccines during the first 20 weeks post-vaccination. The cumulative incidence of recorded SARS-CoV-2 infection 6 weeks after vaccination with BNT162b2 was 19.2 per 1000 people (95%CI 18.6 to 19.7) and with ChAdOx1 was 18.9 (95%CI 17.6 to 20.3), representing a difference of -0.24 per 1000 people (95%CI -1.71 to 1.22). The difference in the cumulative incidence per 1000 people of COVID-19 accident and emergency attendance at 6 weeks was 0.01 per 1000 people (95%CI -0.27 to 0.28). For COVID-19 hospital admission, this difference was 0.03 per 1000 people (95%CI -0.22 to 0.27). ConclusionsIn this cohort of healthcare workers where we would not anticipate vaccine type to be related to health status, we found no substantial differences in the incidence of SARS-CoV-2 infection or COVID-19 disease up to 20 weeks after vaccination. Incidence dropped sharply after 3-4 weeks and there were very few COVID-19 hospital attendance and admission events after this period. This is in line with expected onset of vaccine-induced immunity, and suggests strong protection against COVID-19 disease for both vaccines.

7.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20203869

RESUMEN

BackgroundRecruitment into randomized trials of hydroxychloroquine (HCQ) for prevention of COVID-19 has been adversely affected by a widespread conviction that HCQ is not effective for prevention. In the absence of an updated systematic review, we conducted a meta-analysis of randomized trials that study the effectiveness of HCQ to prevent COVID-19. MethodsA search of PubMed and medRxiv with expert consultation found ten completed randomized trials: seven pre-exposure prophylaxis trials and three post-exposure prophylaxis trials. We obtained or calculated the risk ratio of COVID-19 diagnosis for assignment to HCQ versus no HCQ (either placebo or usual care) for each trial, and then pooled the risk ratio estimates. ResultsThe pooled risk ratio estimate of the pre-exposure prophylaxis trials was 0.72 (95% CI: 0.58-0.91) when using either a fixed effect or a standard random effects approach, and 0.72 (95% CI: 0.52-1.00) when using a conservative modification of the Hartung-Knapp random effects approach. The corresponding estimates for the post-exposure prophylaxis trials were 0.91 (95% CI: 0.71-1.16) and 0.91 (95% CI: 0.54-1.55). All trials found a similar rate of serious adverse effects in the HCQ and no HCQ groups. DiscussionA benefit of HCQ as prophylaxis for COVID-19 cannot be ruled out based on the available evidence from randomized trials. However, the "not statistically significant" findings from early prophylaxis trials were widely interpreted as definite evidence of lack of effectiveness of HCQ. This interpretation disrupted the timely completion of the remaining trials and thus the generation of precise estimates for pandemic management before the development of vaccines.

8.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-20169722

RESUMEN

ObjectiveTo estimate the range of the age- and sex-specific infection fatality risk (IFR) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on confirmed coronavirus disease 2019 (COVID-19) deaths and excess all-cause deaths. DesignNationwide population-based seroepidemiological study combined with two national surveillance systems. Setting and participantsNon-institutionalized Spanish population of all ages. Main outcome measuresThe range of IFR was calculated as the observed number of COVID-19 deaths and excess deaths divided by the estimated number of SARS-CoV-2 infections in the non-institutionalized Spanish population. Laboratory-confirmed COVID-19 deaths were obtained from the National Epidemiological Surveillance Network (RENAVE) and excess all-cause deaths from the Monitoring Mortality System (MoMo) up to July 15, 2020. SARS-CoV-2 infections were derived from the estimated seroprevalence by a chemiluminiscent microparticle immunoassay for IgG antibodies in 61,092 participants in the ENE-COVID nationwide serosurvey between April 27 and June 22, 2020. ResultsThe overall IFR (95% confidence interval) was 0.8% (0.8% to 0.9%) for confirmed COVID-19 deaths and 1.1% (1.0% to 1.2%) for excess deaths. The IFR ranged between 1.1% (1.0% to 1.2%) and 1.4% (1.3% to 1.5%) in men and between 0.6% (0.5% to 0.6%) and 0.8% (0.7% to 0.8%) in women. The IFR increased sharply after age 50, ranging between 11.6% (8.1% to 16.5%) and 16.4% (11.4% to 23.2%) in men [≥]80 years and between 4.6% (3.4% to 6.3%) and 6.5% (4.7% to 8.8%) in women [≥]80 years. ConclusionThe sharp increase in SARS-CoV-2 IFR after age 50 was more marked in men than in women. Fatality from COVID-19 is substantially greater than that reported for other common respiratory diseases such as seasonal influenza. WHAT IS ALREADY KNOWN ON THIS TOPICInfection fatality risk (IFR) for SARS-CoV-2 is a key indicator for policy decision making, but its magnitude remains under debate. Case fatality risk, which accounts for deaths among confirmed COVID-19 cases, overestimates SARS-CoV-2 fatality as it excludes a large proportion of asymptomatic and mild-symptomatic infections. Population-based seroepidemiological studies are a valuable tool to properly estimate the number of infected individuals, regardless of symptoms. Also, because ascertainment of deaths due to COVID-19 is often incomplete, the calculation of the IFR should be complemented with data on excess all-cause mortality. In addition, data on age- and sex-specific IFR are scarce, even though age and sex are well known modifiers of the clinical evolution of COVID-19. WHAT THIS STUDY ADDSUsing the ENE-COVID nationwide serosurvey and two national surveillance systems in Spain, this study provides a range of age- and sex-specific IFR estimates for SARS-CoV-2 based on laboratory-confirmed COVID-19 deaths and excess all-cause deaths. The risk of death was very low among infected individuals younger than 50 years, but it increased sharply with age, particularly among men. In the oldest age group ([≥]80 years), it was estimated that 12% to 16% of infected men and 5% to 6% of infected women died during the first epidemic wave.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA