Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39149281

RESUMEN

Within most tissues, the extracellular microenvironment provides mechanical cues that guide cell fate and function. Changes in the extracellular matrix such as aberrant deposition, densification and increased crosslinking are hallmarks of late-stage fibrotic diseases that often lead to organ dysfunction. Biomaterials have been widely used to mimic the mechanical properties of the fibrotic matrix and study cell function. However, the initiation of fibrosis has largely been overlooked, due to the challenges in recapitulating early fibrotic lesions within the native extracellular microenvironment. Using visible light mediated photochemistry, we induced local crosslinking and stiffening of extracellular matrix proteins within ex vivo murine and human tissue. In ex vivo lung tissue of epithelial cell lineage-traced mice, local matrix crosslinking mimicked early fibrotic lesions that increased alveolar epithelial cell spreading, differentiation and extracellular matrix remodeling. However, inhibition of cytoskeletal tension or integrin engagement reduced epithelial cell spreading and differentiation, resulting in alveolar epithelial cell dedifferentiation and reduced extracellular matrix deposition. Our findings emphasize the role of local extracellular matrix crosslinking and remodeling in early-stage tissue fibrosis and have implications for ex vivo disease modeling and applications to other tissues.

2.
Adv Sci (Weinh) ; 11(3): e2306210, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37997199

RESUMEN

Intercellular communication is critical to the formation and homeostatic function of all tissues. Previous work has shown that cells can communicate mechanically via the transmission of cell-generated forces through their surrounding extracellular matrix, but this process is not well understood. Here, mechanically defined, synthetic electrospun fibrous matrices are utilized in conjunction with a microfabrication-based cell patterning approach to examine mechanical intercellular communication (MIC) between endothelial cells (ECs) during their assembly into interconnected multicellular networks. It is found that cell force-mediated matrix displacements in deformable fibrous matrices underly directional extension and migration of neighboring ECs toward each other prior to the formation of stable cell-cell connections enriched with vascular endothelial cadherin (VE-cadherin). A critical role is also identified for calcium signaling mediated by focal adhesion kinase and mechanosensitive ion channels in MIC that extends to multicellular assembly of 3D vessel-like networks when ECs are embedded within fibrin hydrogels. These results illustrate a role for cell-generated forces and ECM mechanical properties in multicellular assembly of capillary-like EC networks and motivates the design of biomaterials that promote MIC for vascular tissue engineering.


Asunto(s)
Comunicación Celular , Células Endoteliales , Matriz Extracelular , Ingeniería de Tejidos , Materiales Biocompatibles
3.
Acta Biomater ; 119: 197-210, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33181362

RESUMEN

Enzymatically degradable hydrogels were designed for the 3D culture of valvular interstitial cells (VICs), and through the incorporation of various functionalities, we aimed to investigate the role of the tissue microenvironment in promoting the osteogenic properties of VICs and matrix mineralization. Specifically, porcine VICs were encapsulated in a poly(ethylene glycol) hydrogel crosslinked with a matrix metalloproteinase (MMP)-degradable crosslinker (KCGPQG↓IWGQCK) and formed via a thiol-ene photoclick reaction in the presence or absence of collagen type I to promote matrix mineralization. VIC-laden hydrogels were treated with osteogenic medium for up to 15 days, and the osteogenic response was characterized by the expression of RUNX2 as an early marker of an osteoblast-like phenotype, osteocalcin (OCN) as a marker of a mature osteoblast-like phenotype, and vimentin (VIM) as a marker of the fibroblast phenotype. In addition, matrix mineralization was characterized histologically with Von Kossa stain for calcium phosphate. Osteogenic response was further characterized biochemically with calcium assays, and physically via optical density measurements. When the osteogenic medium was supplemented with calcium chloride, OCN expression was upregulated and mineralization was discernable at 12 days of culture. Finally, this platform was used to screen various drug therapeutics that were assessed for their efficacy in preventing mineralization using optical density as a higher throughput readout. Collectively, these results suggest that matrix composition has a key role in supporting mineralization deposition within diseased valve tissue.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Animales , Válvula Aórtica , Células Cultivadas , Hidrogeles , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA