Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 10(29): e2303032, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37565600

RESUMEN

Owing to the emerging trend of non-volatile memory and data-centric computing, the demand for more functional materials and efficient device architecture at the nanoscale is becoming stringent. To date, 2D ferroelectrics are cultivated as channel materials in field-effect transistors for their retentive and switchable dipoles and flexibility to be compacted into diverse structures and integration for intensive production. This study demonstrates the in-plane (IP) ferroelectric memory effect of a 100 nm channel-length 2D ferroelectric semiconductor α-In2 Se3 stamped onto nanogap electrodes on Si/SiO2 under a lateral electric field. As α-In2 Se3 forms the bottom contact of the nanogap electrodes, a large memory window of 13 V at drain voltage between ±6.5 V and the on/off ratio reaching 103 can be explained by controlled IP polarization. Furthermore, the memory effect is modulated by the bottom gate voltage of the Si substrate due to the intercorrelation between IP and out-of-plane (OOP) polarization. The non-volatile memory characteristics including stable retention lasting 17 h, and endurance over 1200 cycles suggest a wide range of memory applications utilizing the lateral bottom contact structure.

2.
Adv Mater ; 31(30): e1901843, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31169938

RESUMEN

Hybrid perovskite materials are famous for their great application potential in photovoltaics and optoelectronics. Among them, lead-iodide-based perovskites receive great attention because of their good optical absorption ability and excellent electrical transport properties. Although many believe the ferroelectric photovoltaic effect (FEPV) plays a crucial role for the high conversion efficiency, the ferroelectricity in CH3 NH3 PbI3 is still under debate, and obtaining ferroelectric lead iodide perovskites is still challenging. In order to avoid the randomness and blindness in the conventional method of searching for perovskite ferroelectrics, a design strategy of fluorine modification is developed. As a demonstration, a nonpolar lead iodide perovskite is modified and a new 2D fluorinated layered hybrid perovskite material of (4,4-difluorocyclohexylammonium)2 PbI4 , 1, is obtained, which possesses clear ferroelectricity with controllable spontaneous polarization. The direct bandgap of 2.38 eV with strong photoluminescence also guarantees the direct observation of polarization-induced FEPV. More importantly, the 2D structure and fluorination are also expected to achieve both good stability and charge transport properties. 1 is not only a 2D fluorinated lead iodide perovskite with confirmed ferroelectricity, but also a great platform for studying the effect of ferroelectricity and FEPV in the context of lead halide perovskite solar cells and other optoelectronic applications.

3.
Angew Chem Int Ed Engl ; 58(26): 8857-8861, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31050113

RESUMEN

The X-site ion in organic-inorganic hybrid ABX3 perovskites (OHPs) varies from halide ion to bridging linkers like HCOO- , N3 - , NO2 - , and CN- . However, no nitrite-based OHP ferroelectrics have been reported so far. Now, based on non-ferroelectric [(CH3 )4 N][Ni(NO2 )3 ], through the combined methodologies of quasi-spherical shape, hydrogen bonding functionality, and H/F substitution, we have successfully synthesized an OHP ferroelectric, [FMeTP][Ni(NO2 )3 ] (FMeTP=N-fluoromethyl tropine). As an unprecedented nitrite-based OHP ferroelectric, the well-designed [FMeTP][Ni(NO2 )3 ] undergoes the ferroelectric phase transition at 400 K with an Aizu notation of 6/mmmFm, showing multiaxial ferroelectric characteristics. This work is a great step towards not only enriching the molecular ferroelectric families but also accelerating the potential practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA