Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Sci ; 10(8): 2349-2359, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30881663

RESUMEN

The peroxidase activity of cytochrome c (cyt c) plays a key role during apoptosis. Peroxidase catalysis requires a vacant Fe coordination site, i.e., cyt c must undergo an activation process involving structural changes that rupture the native Met80-Fe contact. A common strategy for dissociating this bond is the conversion of Met80 to sulfoxide (MetO). It is widely believed that this MetO formation in itself is sufficient for cyt c activation. This notion originates from studies on chloramine-T-treated cyt c (CT-cyt c) which represents a standard model for the peroxidase activated state. CT-cyt c is considered to be a "clean" species that has undergone selective MetO formation, without any other modifications. Using optical, chromatographic, and mass spectrometry techniques, the current work demonstrates that CT-induced activation of cyt c is more complicated than previously thought. MetO formation alone results in only marginal peroxidase activity, because dissociation of the Met80-Fe bond triggers alternative ligation scenarios where Lys residues interfere with access to the heme. We found that CT causes not only MetO formation, but also carbonylation of several Lys residues. Carbonylation is associated with -1 Da mass shifts that have gone undetected in the CT-cyt c literature. Proteoforms possessing both MetO and Lys carbonylation exhibit almost fourfold higher peroxidase activity than those with MetO alone. Carbonylation abrogates the capability of Lys to coordinate the heme, thereby freeing up the distal site as required for an active peroxidase. Previous studies on CT-cyt c may have inadvertently examined carbonylated proteoforms, potentially misattributing effects of carbonylation to solely MetO formation.

2.
Genes (Basel) ; 9(12)2018 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-30544642

RESUMEN

The molecular mechanisms of translation are highly conserved in all organisms indicative of a single evolutionary origin. This includes the molecular interactions of tRNAs with their cognate aminoacyl-tRNA synthetase, which must be precise to ensure the specificity of the process. For many tRNAs, the anticodon is a major component of the specificity. This is not the case for the aminoacylation of alanine and serine to their cognate tRNAs. Rather, aminoacylation relies on other features of the tRNA. For tRNASer, a key specificity feature is the variable arm, which is positioned between the anticodon arm and the T-arm. The variable arm is conserved from yeast to human. This work was initiated to determine if the structure/function of tRNASer has been conserved from Saccharomyces cerevisiae to human. We did this by detecting mistranslation in yeast cells with tRNASer derivatives having the UGA anticodon converted to UGG for proline. Despite being nearly identical in everything except the acceptor stem, human tRNASer is less active than yeast tRNASer. A chimeric tRNA with the human acceptor stem and other sequences from the yeast molecule acts similarly to the human tRNASer. The 3:70 base pair in the acceptor stem (C:G in yeast and A:U in humans) is a prime determinant of the specificity. Consistent with the functional difference of yeast and human tRNASer resulting from subtle changes in the specificity of their respective SerRS enzymes, the functionality of the human and chimeric tRNASerUGG molecules was enhanced when human SerRS was introduced into yeast. Residues in motif 2 of the aminoacylation domain of SerRS likely participated in the species-specific differences. Trp290 in yeast SerRS (Arg313 in humans) found in motif 2 is proximal to base 70 in models of the tRNA-synthetase interaction. Altering this motif 2 sequence of hSerRS to the yeast sequence decreases the activity of the human enzyme with human tRNASer, supporting the coadaptation of motif 2 loop⁻acceptor stem interactions.

3.
Genetics ; 206(4): 1865-1879, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28576863

RESUMEN

The genetic code converts information from nucleic acid into protein. The genetic code was thought to be immutable, yet many examples in nature indicate that variations to the code provide a selective advantage. We used a sensitive selection system involving suppression of a deleterious allele (tti2-L187P) in Saccharomyces cerevisiae to detect mistranslation and identify mechanisms that allow genetic code evolution. Though tRNASer containing a proline anticodon (UGG) is toxic, using our selection system we identified four tRNASerUGG variants, each with a single mutation, that mistranslate at a tolerable level. Mistranslating tRNALeuUGG variants were also obtained, demonstrating the generality of the approach. We characterized two of the tRNASerUGG variants. One contained a G26A mutation, which reduced cell growth to 70% of the wild-type rate, induced a heat shock response, and was lost in the absence of selection. The reduced toxicity of tRNASerUGG-G26A is likely through increased turnover of the tRNA, as lack of methylation at G26 leads to degradation via the rapid tRNA decay pathway. The second tRNASerUGG variant, with a G9A mutation, had minimal effect on cell growth, was relatively stable in cells, and gave rise to less of a heat shock response. In vitro, the G9A mutation decreases aminoacylation and affects folding of the tRNA. Notably, the G26A and G9A mutations were phenotypically neutral in the context of an otherwise wild-type tRNASer These experiments reveal a model for genetic code evolution in which tRNA anticodon mutations and mistranslation evolve through phenotypically ambivalent intermediates that reduce tRNA function.


Asunto(s)
Codón/genética , Evolución Molecular , ARN de Transferencia de Prolina/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutación , Fenotipo , Biosíntesis de Proteínas , Estabilidad del ARN , ARN de Transferencia de Prolina/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA